Original Research Paper

Nucleotide variations of WRKY70 gene sequence related to Huanglongbing resistance in citrus

Kristianto Nugroho^{1,3}, Agus Purwito^{2*}, Dewi Sukma², Mia Kosmiatin³, Tri Joko Santoso³, Reflinur⁴, Mastur⁵

¹Graduate Program of Plant Breeding and Biotechnology, Faculty of Agriculture, IPB University, Jalan Meranti IPB Dramaga Campus, Bogor 16680, West Java, Indonesia

²Department of Agronomy and Horticulture, Faculty of Agriculture, IPB University, Jalan Meranti IPB Dramaga Campus, Bogor 16680, West Java, Indonesia

³Research Center for Horticulture, Research Organization for Agriculture and Food, National Research and Innovation Agency, Jalan Raya Bogor Km. 46 Cibinong, Bogor 16911, West Java, Indonesia

⁴Research Center for Applied Botany, Research Organization for Life Sciences and Environment, National Research and Innovation Agency, Jalan Raya Bogor Km. 46 Cibinong, Bogor 16911, West Java, Indonesia

⁵Politeknik Pembangunan Pertanian Yogyakarta-Magelang, Ministry of Agriculture Republic of Indonesia, Jalan Kusumanegara 2, Umbulharjo 55167, Yogyakarta, Indonesia

Article History

Received: August 16th, 2025 Revised: September 17th, 2025 Accepted: October 05th, 2025

*Corresponding Author: **Agus Purwito**,

Department of Agronomy and Horticulture, Faculty of Agriculture, IPB University, Jalan Meranti IPB Dramaga Campus, Bogor, West Java, Indonesia

Email: apurwito@apps.ipb.ac.id

Abstract: Huanglongbing, inflicted by Candidatus Liberibacter asiaticus in Asia region, is a destructive disease affecting citrus productions worlwide. Several studies have identified resistance genes that play essential roles in the citrus defense system against this pathogen. The goals of this study were to design the specific gene primers from the WRKY70 gene sequence and analyze the nucleotide variations and genetic diversity among several citrus genotypes. Genomic DNA from nine citrus genotypes were amplified using WRKY70specific gene primers and the products of PCR were sent to Sanger sequencing, while the sequences of the other 12 genotypes were collected from Citrus Genome Database. The results revealed a total of 282 nucleotide variations which consisted of 157 SNPs, 28 insertions, and 97 deletions, were identified in the WRKY70 gene fragment sequence. There were three notable SNPs detected, with only one SNP [C/T] in first intron area at the position of 524 bp downstream from START codon that showed its ability to distinguish between susceptible and tolerant/resistant citrus genotypes. The phylogenetic analysis also revealed the clearly separation among citrus genotypes in two main clusters. The discovery of this SNP is useful for designing a functional marker as a screening tool in citrus breeding program in the future.

Keywords: Candidatus Liberibacter asiaticus, Citrus Genome Database, resistance gene, Sanger sequencing, SNP

Introduction

Huanglongbing (HLB), a destructive disease to citrus plantations worldwide, in Asia region is caused by a heat tolerant, uncultured, Gram-negative bacterium namely *Candidatus* Liberibacter asiaticus which transmitted by Asian citrus psyllid (*Diaphorina citri*) (Jagoueix *et al.*, 1994; Bové, 2006; Gottwald *et al.*, 2007; Grafton-Cardwell *et al.*, 2013). The bacteria are infected the citrus phloem tissue that induced the plant defense system to

accumulate a starch namely callose (β-1,3glucan) in phloem sieve tube to restrict the movement of the bacteria, but on the contrary it is inhibited the photosynthate flow to other plant organs and leads the phloem damaged (Etxeberria & Narciso, 2015; Welker et al., 2022; Bernardini et al., 2024). The symptoms of this disease are varied including yellow shoots, blotchy-mottled leaf with corky vein, small fruit size with dull color, abortus fruit, stunted growth that occassionally misinterpreted as nutrient deficiency

symptoms (Lee *et al.*, 2015; Li *et al.*, 2019; Cervantes-Santos *et al.*, 2025). The economic losses caused by this disease are ranging from 30 to 100% (Iftikhar *et al.*, 2016).

The commercial citrus cultivars that preferred by the consumers are vulnerable to HLB disease (Pandey et al., 2022). Therefore, the breeding program to improve the HLBresistant commercial cultivars are challenging due to the unavailability of citrus germplasms which are particularly resistant or tolerant to HLB (Bassanezi et al., 2020). However, a number of studies have reported the existance of several citrus species and their relatives that exhibited their resistance or tolerance to the disease, such as rough lemon (Citrus jambhiri) (Fan et al., 2012); Australian finger lime (Citrus australasica) (Weber et al,. 2022); trifoliate citrus (Poncirus trifoliata) (Hall et al., 2017); Chinese-box orange (Severinia buxifolia) (Miles et al., 2017); and orange jasmine (Murraya paniculata) (Cifuentes-Arenas et al., 2019). Several pomelo (Citrus maxima) cultivars such as Pangkajene Merah, Pangkajene Putih, Raja, and Magetan also showed their resistance to HLB disease according to Prasetyaningrum et al. (2012).

Evaluation of citrus resistance to HLB should be adressed continuously to obtain more cultivars or species with highly resistance or tolerance to the disease, as the genetic material sources in breeding programs. All this time, the evaluation of citrus resistance to HLB is challenging due to the inability of the bacteria to be cultured in artificial medium. Previous study from Sechler *et al.* (2009) has been successfully formulated Liber A medium for HLB bacteria culture. Additionally, Parker *et al.* (2014) reported the successful of HLB bacteria culture using one third consentration of King's B medium supplemented with citrus commercial juice.

The discovery of other evaluation methods should be performed, specifically using molecular marker. The utilization of molecular marker to analyze the citrus resistance to HLB is promote several benefits such as early detection in seedling phase, unaffected by environmental factors, high reproducibility, and high polymorphisms to detect variation in nucleotide level (Nadeem *et al.*, 2018; Garrido-Cardenas *et al.*, 2018).

Previous study from Nugroho *et al.* (2025) could identify a Single Nucleotide Polymorphism (SNP) that located in 200 bp downstream from START codon in *callose synthase* 7 gene, which could distinguish between resistant/tolerant and susceptible citrus genotypes. However the other genes that play significant role in HLB resistance should be explore to find the other SNPs that could be utillized as selection marker.

Study from Mafra et al. (2012) demostrated a gene-encoded transcription factor, namely WRKY70, which showed an essential role in response to HLB infection. Wu reported a gene, named et al. (2021) **NONEXPRESSOR** OF PATHOGENESIS-RELATED GENES 1 (CsNPR1) in citrus that played an important role in Huanglongbing pathogen's plant defense. Dong et al. (2024) also reported a gene, namely salicylic acid binding protein 2 (CaSABP2), that responsible for methyl salicylate conversion to salicylic acid and is essentially functional in the systemic acquired resistance (SAR) mechanism in citrus plants. The goals of this study were to design the specific gene primers from the WRKY70 gene sequence and analyze the nucleotide variations and genetic diversity among several citrus genotypes using in silico method. The discovery of the nucleotide variations in this study, specifically SNPs, that could distinguish between resistant/tolerant and susceptible citrus genotypes, is expected could be useful for developing functional marker as a screening tool in citrus breeding activities in the future.

Materials and Methods

Plant Genetic Materials

This research was conducted from June to August 2025 in Plant DNA Experiment Laboratory, PP4 Building, BRIN, Cibinong Bogor. A total of 21 citrus genotypes were analyzed in this study (Table 1). As many as nine genotypes were utilized in Sanger sequencing analysis. Of these nine genotypes, as many as seven genotypes i.e. Citrus nobilis cv. Pontianak, C. nobilis cv. Madu, C. reticulata cv. Terigas, C. reticulata cv. Batu55, rough lemon (C. jambhiri), C. maxima cv. Pangkajene Putih, and C. maxima cv. Magetan were collected from the Agency for

Agricultural Assemblies and Modernization for Citrus and Subtropical Fruits (BRMP Jestro) in Malang, East Java, Indonesia, while orange jasmine (*Murraya paniculata*) and Chinese-box orange (*Severinia buxifolia*) were collected from

local farmers. The other 12 citrus genotypes data were collected *in silico* from Citrus Genome Database

(https://www.citrusgenomedb.org/blast/nucleotide/nucleotide).

Table 1. List of citrus genotypes used in this study

No	Citrus Genotypes	Collection Origin
1.	Citrus nobilis cv. Pontianak	BRMP Jestro
2.	C. nobilis ev. Madu	BRMP Jestro
3.	C. reticulata cv. Terigas	BRMP Jestro
4.	C. reticulata cv. Batu55	BRMP Jestro
5.	C. jambhiri	BRMP Jestro
6.	C. maxima cv. Pangkajene Putih	BRMP Jestro
7.	C. maxima cv. Magetan	BRMP Jestro
8.	C. ichangensis cv. ZGYCC	Citrus Genome Database
9.	C. changshanensis cv. Huyou	Citrus Genome Database
10.	C. garrawayi UQ	Citrus Genome Database
11.	C. glauca CRC3463	Citrus Genome Database
12.	C. hongheensis cv.HH	Citrus Genome Database
13.	C. inodora CRC3784	Citrus Genome Database
14.	C. linwuensis cv. LW	Citrus Genome Database
15.	C. mangshanensis cv. MSYG	Citrus Genome Database
16.	C. australasica ev. Rainbow	Citrus Genome Database
17.	Severinia buxifolia	Local farmer in Bandung, West Java
18.	Citropsis gilletiana cv. CGI	Citrus Genome Database
19.	Fortunella hindsii S3y-45	Citrus Genome Database
20.	Poncirus trifoliata DPI 50-7	Citrus Genome Database
21.	Murraya paniculata	Local farmer in Citayam, West Java

WRKY70 Gene Sequence Searching and Specific Gene Primers Designing

The searching of WRKY70 gene sequence was performed utilizing the National Center for Biotechnology Information (NCBI) (http://www.ncbi.nlm.nih.gov/). The mRNA sequence collected from NCBI was then compared with Citrus sinensis v1.0 genome (JGI) the Citrus Genome in Database (https://www.citrusgenomedb.org/blast/nucleotid e/nucleotide), using the Basic Local Alignment Search Tool nucleotide (BLASTn) program

(Altschul *et al.*, 1997). The sequence obtained from BLASTn result was subsequently employed for primer design using Primer3Plus (https://www.bioinformatics.nl/cgi-

bin/primer3plus/primer3plus.cgi) (Untergasser *et al.*, 2007). The sequences of primer acquired from Primer3Plus were then rechecked using PrimerBLAST

(https://www.ncbi.nlm.nih.gov/tools/primer-blast/index.cgi) (Ye *et al.*, 2012) to validate that

<u>blast/index.cgi</u>) (Ye *et al.*, 2012) to validate that the primers only have a single annealing site. The sequences of the primers are displayed in Table 2.

Table 2. The sequence of specific gene primers designed in this study

No	Primer's name	Sequences (5'-3')	Tm (°C)	Target size (bp)
1.	CsWRKY70-F	GAAAATGGAGGCCGGTCAG	62,9	1380
2.	CsWRKY70-R	ATCATCAAAGTTAACAGACATATCCA	58,1	1380

Genomic DNA Extraction, DNA Amplification, and Sanger Sequencing

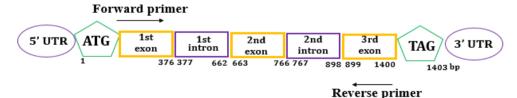
Genomic DNA from nine citrus genotypes, i.e. *Citrus nobilis* cv. Pontianak, *C. nobilis* cv. Madu, *C. reticulata* cv. Terigas, *C. reticulata* cv.

Batu55, rough lemon (*C. jambhiri*), *C. maxima* cv. Pangkajene Putih, and *C. maxima* cv. Magetan, *M. paniculata*, and *S. buxifolia*, were extracted from leaves, using modified Doyle & Doyle (1990) method, by freshly added 0.38%

DOI: http://doi.org/10.29303/jbt.v25i4.10092

(w/v)sodium bisulfite and 2% (w/v)polyvinylpyrrolidone (PVP) to the extraction buffer. The DNA stock solutions were then diluted to a final concentration of 20 ng/uL and used as the DNA templates. The PCR cocktail for DNA amplification for each sample was consisted of 20 ng/µL DNA template at the volume of 2 μL, 2× MyTaqTM HS Red Mix (Bioline, UK) at the volume of 20 µL, 10 µM forward and reverse primers, each at the volume of 2 µL, and sterile ddH2O adjusted to a final volume of 40 µL. The PCR process was performed employing T100 Thermal Cycler (Bio-Rad, USA) with the following profiles, i.e.: first denaturation at 95 °C as long as 5 minutes. continued by 35 cycles of denaturation at 94 °C as long as 30 seconds, annealing at 55 °C as long as 1 minute, and first extension at 72 °C as long as 1 minute. The PCR reaction was finished with the final extension at 60 °C for 15 minutes.

The products of PCR were then validated using 1% (w/v) agarose gel electrophoresis. The gel was then stained using RedSafeTM (iNtRON Biotechnology, South Korea) and envisioned using a UV transilluminator. The PCR products of nine citrus genotypes with clearly visible amplicon bands were then sent to PT Genetika Science Indonesia for Sanger sequencing. Additionally, the Sanger sequencing of the other twelve citrus genotypes were not employed in this study due to the limitation of plant genetic materials in our study. Therefore the *WRKY70* fragment gene sequence of those twelve citrus genotypes were collected *in silico* via Citrus Genome Database.


Data Analysis

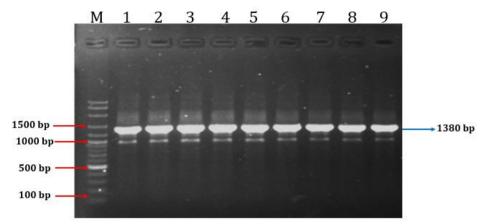
The WRKY70 fragment gene sequence, both collected from Sanger sequencing results and Citrus Genome Database collection, were analyzed using Clustal (https://www.ebi.ac.uk/jdispatcher/msa/clustalo) (Sievers & Higgins, 2014) to identify the specifically variations, nucleotide nucleotide polymorphisms (SNPs), insertions, and deletions. The phylogenetic tree was constructed from all of the citrus genotypes sequences using the Unweighted Pair Group Method with Arithmetic (UPGMA) program and the Tamura-Nei model, utilizing 1000 times bootstrap replication in Mega X (Kumar et al., 2018).

Results and Discussion

Searching and Designing of *WRKY70* Specific Gene Primers

The searching for WRKY70 gene sequence in the NCBI database resulted the accession number of XM 006481140.4 that represented the PREDICTED: Citrus sinensis probable transcription factor WRKY (LOC102630555). This sequence showed 98.78% homology to a gene located at the orange1.1g022398m locus in the Citrus Genome Database. The length of gene sequence was 1590 bp, with the length of coding sequence was 984 bp. The gene annotation revealed its relation to WRKY domain superfamily with the function as DNA-binding transcription factor. The coding sequence of the gene consisted of three exons interspersed with two introns. The forward primer in this study was designed in the first exon, while the reverse primer was designed in the third exon, as presented in Figure 1.

Figure 1. The arrangement of specific gene primers designed based on citrus *WRKY70* gene sequence. Information: ATG: START codon, TAG: STOP codon, 5' and 3'-UTR: untranslated region


The sequence collected from orange1.1g022398m locus was also used as the reference to obtain the *WRKY70* fragment gene

sequence from the other twelve citrus genotypes that were not analyzed using Sanger sequencing. The sequence was used as the input in BLASTn

program compared to the twelve citrus genomes data that were available in Citrus Genome Database. The homology analysis results revealed high similarities percentage that ranging from 92.55 to 98.62%, as presented in Table 3.

The result of 1% (w/v) agarose gel electrophoresis revealed the clearly and visible amplicon bands from all of the nine citrus genotypes DNA. Each genotypes produced

amplicon band with the size as targeted at 1380 bp (Figure 2), with no unspecific band appeared. In this study, there was no polymorphism detected among the nine citrus genotypes based on *WRKY70* specific gene primers, in contrast to previous study from Nugroho *et al.* (2025), which showed non-specific amplicon band from *M. paniculata* genotypes, using *CalS7* specific gene primers.

Figure 2. Visualization of PCR products from nine citrus genotypes that were amplified using *WRKY70*-specific gene primers using gel electrophoresis of 1% (w/v) agarose. Information: M: DNA ladder of 100 bp plus (Vivantis Technologies), 1: *C. nobilis* cv. Pontianak, 2: *C. nobilis* cv. Madu, 3: *C. reticulata* cv. Terigas, 4: *C. reticulata* cv. Batu55, 5: *C. jambhiri*, 6: *C. maxima* cv. Pangkajene Putih, 7: *C. maxima* cv. Magetan, 8: *M. paniculata*, and 9: *S. buxifolia*

Table 3. Homology analysis results of *WRKY70* gene sequence reference with the twelve citrus genomes data available in Citrus Genome Database

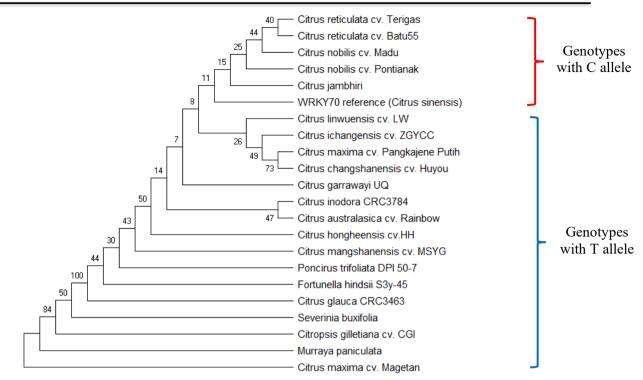
No	Reference Locus	Genome Target	Homolog Locus	Similarity Percentage (%)					
1.		Citrus ichangensis ev. ZGYCC v2.0 genome	contig442 (79608447962427)	98.05					
2.		C. changshanensis cv. Huyou	chr6 (17050673.17049093)	97.86					
3.		v1.0 genome C. garrawayi UQ v1.0 genome	hap2-C.garr_06 (7680379. 7681951)	96.86					
4.	orange1.1g022398m	C. glauca CRC3463 v1.0 genome	Pri_Scaffold_6 (23607160.23605572)	97.11					
5.	scaffold00036:1154 95.117084- (Citrus	C. hongheensis cv. HH v1.0 genome	Contig563 (2702232.2700668)	96.60					
6.	sinensis)	C. inodora CRC3784 v1.0 genome	Alt_Scaffold_6 (19250761.19249172)	98.18					
7.		C. linwuensis cv. LW v1.0 genome	contig375 (6106376.6104778)	97.75					
8.		C. mangshanensis cv. MSYG v1.0 genome	contig352 (31289893127401)	97.49					
9.		C. australasica cv. Rainbow v1.0 genome	Chr06.H1 (7796474. 7798062)	97.93					

DOI: http://doi.org/10.29303/jbt.v25i4.10092

No	Reference Locus	Genome Target	Homolog Locus	Similarity Percentage (%)
10.		Poncirus trifoliata DPI 50-7	Ptrif.0006s1042.1.v1.3.	96.88
		v1.3.1 genome CDS	1	
			(14970466.14972132-)	
11.		Citropsis gilletiana cv. CGI v1.0	ctg000159 (5235000	92.55
		genome	5233430)	
12.		Fortunella hindsii S3y-45 v1.0	sjg209700.1	98.62
		genome CDS	(5020096.5023338-)	

Variations of Nucleotide among Citrus Genotypes

In this study, as many as 282 nucleotide variations which consisted of 157 (55.7%) Single Nucleotide Polymorphisms (SNPs), 28 (9.9%) insertions, and 97 (34.4%) deletions, were identified in the WRKY70 gene fragment sequence, from 21 citrus genotypes used in this study. The majority of the nucleotide variations were categorized as SNPs, followed by deletions and insertions, similar to previous study from Nugroho et al. (2025). According to Tatarinova et al. (2016), the genetic variations in organisms mostly identified as SNPs and the small portion of insertions and deletions, with their functions in genetic diversity and evolutionary process for conservation of the original state or development new varieties with desired characters.


There were three notable SNPs that were identified in this study, but only one SNP that significantly could distinguish between the susceptible and resistant/tolerant citrus genotypes used in this study (Table 4). The first SNP [G/C] is located at 108 bp downstream from START codon. However the SNP was not only possessed by the susceptible genotypes, but also possessed by the resistant genotypes such as Murraya paniculata, Poncirus trifoliata, and Severinia buxifolia. Therefore this SNP can not be utilized as selectable marker. The second SNP [C/T] is located at 237 bp downstream from START codon. Actually the SNP is almost possessed by all of the HLB resistant/tolerant citrus genotypes, except S. buxifolia and Citropsis gilletiana. However the C allele, which possessed by the resistant/tolerant genotypes, is also possessed by the reference sequence obtained from *C. sinensis* (sweet orange), which is categorized as susceptible to HLB disease. Hence, this SNP also can not be used as selectable marker.

The third SNP [C/T] is located at 524 bp downstream from START codon. This SNP could distinguish clearly between the susceptible and resistant/tolerant citrus genotypes used in this study. Several mandarin citrus, such as Citrus nobilis cv. Pontianak, C. nobilis cv. Madu, C. reticulata ev. Terigas, C. reticulata ev. Batu55, including reference sequence obtained from C. sinensis, were possessed the C allele, while the other genotypes possessed the T allele. Mandarin and sweet orange are comercial citrus genotypes that categorized as susceptible to HLB disease. Interestingly, Citrus jambhiri or rough lemon genotype was also possessed the C allele, similar to mandarin and sweet orange. Fan et al. (2012) previously reported that this genotype is categorized as resistant to HLB infection. On the other side, Ramadugu et al. (2016) demonstrated that rough lemon is susceptible to HLB infection according to field evaluations. Previous study from Nugroho et al. (2025) also revealed the existance of a SNP in rough lemon which also possessed by the susceptible citrus genotypes such as mandarin and sweet orange, based on CalS7 specific gene primers. Phylogenetic analysis also revealed the clustering of rough lemon together with the other susceptible genotypes such as mandarin and sweet orange (Figure 4), strengthen about the susceptability of this genotype.

SNP position from START codon in reference sequence (bp)	108	237	524
WRKY70 reference sequence (C. sinensis)	G	C	C
Citrus nobilis ev. Pontianak	\mathbf{C}	T	C
C. nobilis cv. Madu	\mathbf{C}	T	C
C. reticulata cv. Terigas	C	T	\mathbf{C}
C. reticulata cv. Batu55	\mathbf{C}	T	C
C. jambhiri	C	T	\mathbf{C}
C. maxima cv. Pangkajene Putih	G	C	T
C. maxima cv. Magetan	G	C	T
C. ichangensis cv. ZGYCC	G	C	T
C. changshanensis cv. Huyou	G	C	T
C. garrawayi UQ	G	C	T
C. glauca CRC3463	G	C	T
C. hongheensis cv.HH	C	C	T
C. inodora CRC3784	G	C	T
C. linwuensis cv. LW	G	C	T
C. mangshanensis cv. MSYG	C	C	T
C. australasica cv. Rainbow	G	C	T
Severinia buxifolia	C	T	T
Citropsis gilletiana cv. CGI	C	T	T
Fortunella hindsii S3y-45	G	C	T
Poncirus trifoliata DPI 50-7	C	C	T
Murraya paniculata	C	C	T
CNDs registion region	First	First	First
SNPs posiition region	exon	exon	intro

Species/Abbrv		×		*		1	* *	*	*	*	÷		*	*	×	7	t	L	×	×	* :	*	*	×	1	* *	*		+
1. WRKY70_reference_(Citrus_sinensis)	G	G	T	G	G	T	1	T	T	T	G		T	G	T	T		T	T	T	T	= 1	A	G	T	G A	c	A	G T
2. Citrus_nobilis_cvMadu	G	G	T	G	G	T	1	T	T	T	G	C	T	G	T	T	1	T	T	Т	T	4	Α	G	T	G A	c	G	G 1
3. Citrus_nobilis_cvPontianak	G	G	T	G	G	T	ı	T	T	Ť	G	- 0	T	G	T	T	1	T	T	Т	T	d	Α	G	Т	G A	c	G	G 1
4. Citrus_reticulata_cvTerigas	G	G	T	G	G	T /	1	T	T	Ť	G		T	G	T	T	1	T	T	T	T	c i	ΓA	G	T	G A	c	A	G 1
5. Citrus_reticulata_cvBatu55	G	G	T	G	G	T /	N T	T	Т	T	G (-	T	G	T	T	1	N T	T	T	T	3 1	Α	G	T	G A	c	A	G 1
6. Citrus_jambhiri	G	G	T	G	G	T	V T	T	T	T	G	- C	T	G	T	T	1	N T	T	Т	T	d	r A	G	T	Ġ A	c	A	G 1
7. Citrus_maxima_cvPangkajene_Putih	G	G	T	G	G	T	I	T	T	T	G	T	T	G	T	T	1	T	T	T	T	2	Α	G	T 3	G A	c	G	G I
8. Citrus_maxima_cvMagetan	G	G	G	G	G	A A	İ	T	Ť	T	G	T C	T	G	T	T	1	1	Ť	Т	T (C A	A	G	G	G A	c	G	G 1
9. Citrus_ichangensis_cvZGYCC	G	G	T	G	G	T	I	T	T	Ť	G	TC	T	G	T	T	4	T	Т	T	T	= 1	Α	G	T	G A	c	G	G 1
10. Citrus_changshanensis_cvHuyou	G	G	T	G	G	T	V T	T	T	T	G	TO	T	G	T	T	1	N T	T	Т	T	4	Α	G	T	G A	c	G	G 1
11. Citrus_garrawayi_UQ	G	G	T	G	G	T,	d	T	T	Ť	G	Т	T	G	T	T	4	T	T	Т	T	ď	Α	G	Т	G A	c	G	G 1
12. Citrus_glauca_CRC3463	G	G	T	G	T	T /	I	T	T	T	G	TC	T	G	T	T	1	T	T	T	T	ch	Α	G	c	G A	c	G	G 1
13. Citrus_hongheensis_cv.HH	G	G	T	G	G	T	1	T	T	T	G	T C	T	G	T	T		1	Т	T	T	s i	Α	G	T	G A	c	G	G 1
14. Citrus_inodora_CRC3784	G	G	T	G	G	T	V T	T	T	T	G	Т	T	G	T	T	: 1	T	T	T	T (c i	T A	G	T	G A	c	G	G 1
15. Citrus_linwuensis_cvLW	G	G	T	G	G	T /	I	T	T	T	G	T C	T	G	T	T	4	T	T	T	T	c 1	Α	G	T3	G A	c	G	G 1
16. Citrus_mangshanensis_cvMSYG	C	G	T	G	G	Ť,	A T	T	T	T	G	TC	T	G	T	T		T	T	Т	T (ď	Α	G	T	G A	c	G	G 1
17. Citrus_australasica_cvRainbow	G	G	T	G	G	T /	V T	T	T	Ť	G	Т	T	G	T	T	4	T	T	Т	T	a i	Α	G	T	G A	c	G	G 1
18. Severinia_buxifolia	G	G	T	G	G	T	V I	T	T	T	G	TO	T	G	T	T	1	V T	Т	Т	T	d	Α	G	T	G A	c	G	G 1
19. Citropsis_gilletiana_cvCGI	G	G	T	G	G	T	d	T	T	Ť	G	TO	T	G	T	T		c	Т	Т	T	c A	A	G	c	G A	c	Α	G 1
20. Fortunella_hindsii_S3y-45	G	G	T	G	G	T	1	T	T	T	G	T	T	G	T	T	1	T	T	T	T		A	G	T	G A	C	G	TI
21. Murraya_paniculata	G	G	T	G	G	T /	N T	T	Т	T	G	T C	T	G	T	G (1	V T	Т	T	T	a 1	A	G	T	G A	c	G	G 1
22. Poncirus_trifoliata_DPI_50-7	G	G	T	G	G	T	V T	T	T	T	G	TC	T	G	T	T	1	T	T	T	T		T A	G	T	G A	c	G	G 1

Figure 3. The SNP [C/T], highlighted by red arrow, at the position of 524 bp downstream from the START codon at the reference sequence that could distinguish the susceptible and resistant citrus genotypes to HLB disease

Figure 4. Phylogenetic tree of 21 citrus genotypes used in this study, based on variations of nucleotide in *WRKY70* gene fragment sequence, constructed using the UPGMA method and Tamura-Nei model

On the other side, the T allele was detected in 16 citrus genotypes that mostly known as resistant/tolerant genotypes. All of these genotypes were grouped together in similar cluster, separated from mandarin, sweet orange, and rough lemon genotypes (Figure 4). According to Tsai et al. (2008), mostly commercial citrus cultvars before 1970's were susceptible to HLB infection, except pomelo (C. maxima). In 1970's, pomelo is started to be infected by new HLB strain in Taiwan and Southeast Asia region (Tsai et al., 2008). However, Prasetyaningrum et al. (2012) reported the resistance of Indonesia's local pomelo cultivars namely Pangkajene Putih and Magetan cultivars. Australian finger lime (C. australasica) (Weber et al,. 2022); trifoliate citrus (Poncirus trifoliata) (Hall et al., 2017); Chinese-box orange (Severinia buxifolia) (Miles et al., 2017); and orange jasmine (Murraya paniculata) (Cifuentes-Arenas et al., 2019) were also showed the resistance to the disease.

Study from Zhao *et al.* (2017) revealed the tolerance of *Citrus mangshanensis* to HLB due to its different protein degradation pathway compared to sweet orange. *Microcitrus inodora* or *Citrus inodora* was categorized as tolerant genotype with different disease responses due to seedling

variations, according to Ramadugu et al. (2016) study. However, Alves et al. (2021) was categorized C. inodora and Citropsis gilletiana as partial resistant due to the existance of several scions with positive HLB when they used as the rootstocks, in grafting inoculation. Eremocitrus glauca or also known as Citrus glauca is categorized as HLB resistant according to previous studies (Ramadugu et al. 2016; Alves et al. 2021). The tolerance of Citrus ichangensis to HLB disease has also been reported in previous study by and Wu et al. (2020). Kumquat (Fortunella margarita) was initially resistant to HLB disease, however this genotypes also became infected and showed HLB symptoms based on Tsai et al. (2006). On the other side, the resistance information of Hong Kong kumquat (Fortunella hindsii) that was utilized in this study is still unclear due to limited informations (Ramadugu et al., 2016),

In this study, there are also several citrus genotypes with lack of HLB resistance information such as *Citrus linwuensis*, *Citrus changshanensis*, *Citrus garrawayi*, and *Citrus hongheensis*. However all of this genotypes were possessed T allele, similar to the resitant /tolerant genotypes. They were also grouped together in the similar cluster with resitant /tolerant

DOI: http://doi.org/10.29303/jbt.v25i4.10092

genotypes in the phylogenetic tree (Figure 4). Thus, further studies should be adressed to validate the HLB resistance character of these citrus genotypes to validate our study results.

WRKY70 is a gene that belongs to WRKY family gene, which possessed crucial roles in plant resistance to biotic and abiotic stress, nutrient deficiencies, plant development and senescence, as well as hormone-controlled processes (Bakshi & Oelmüller, 2014),. Previous study demostrated the essential role of WRKY70 gene in citrus defense against HLB infection by working as the salvsilic acid-dependent genes activator and jasmonic acid regulated genes repressor (Mafra et al. 2012). The activation of WRKY70 gene is partly triggered by NPR1dependent mechanisms and related to the salysilic acid signaling pathway simultaneously repressed the jasmonic acid pathway (Qiu et al., 2021). Another study reported the role of NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1) gene in citrus that played an important role in Huanglongbing pathogen's plant defense (Wu et al. 2021). Additionally, Deng et al. (2020) also revealed that the WRKY70 gene is actively contributed in the salysilic acid-induced immune responses of the citrus fruit against Penicillium digitatum infection.

The SNP [C/T] that identified in this study is located in the intron area of WRKY70 gene sequence and eventhough it is promoted the amino acid changes from alanine to valine, but the intron area will be spliced and will not affect the gene expression. The existance of the SNP that is located in the intron area has also been reported in previous studies (Koeda et al. 2021; Nugroho et al. 2025). However the SNP still could be converted to a functional marker such as Single Nucleotide Amplified Polymorphism (SNAP) and can be used as a screening tool in citrus breeding program in the future.

Conclusion

The study of *WRKY70* gene sequence related to HLB resistance revealed the nucleotide variations among 21 citrus genotypes. Most of the nucleotide variations identified were SNPs, followed by deletions and insertions. There were three notable SNPs detected in this study, with only one SNP [C/T] in first intron area at the

position of 524 bp downstream from START codon showed its ability to distinguish between susceptible and tolerant/resistant citrus genotypes. The phylogenetic analysis also showed the clearly separation among citrus genotypes in two main clusters. The discovery of this SNP is provides new information about citrus resistance to HLB disease that could be explored continously in future studies

Acknowledgements

This research was supported by In House (Rumah Program) research program in Research Organization for Agriculture and Food, National Research and Innovation Agency (BRIN). Authors express highly acknowledge to BRMP Jestro for providing the citrus genetic materials used in this study.

References

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. *Journal of Molecular Biology*, 215(3), 403-410. https://doi.org/10.1016/S0022-2836(05)80360-2.

Alves, M. N., Lopes, S. A., Raiol-Junior, L. L, Wulff, N. A., Girardi, E. A., Ollitrault, P., & Peña L. (2020). Resistance to 'Candidatus Liberibacter asiaticus,' the Huanglongbing associated bacterium, in sexually and/or graft-compatible citrus relatives. Frontiers in Plant Science, 11, 617664.

https://doi.org/10.3389/fpls.2020.617664.

Bakshi, M., & Oelmüller, R. (2014). WRKY transcription factors: Jack of many trades in plants. *Plant Signaling & Behaviour*, 9(2), e27700. https://doi.org/10.4161/psb.27700.

Bassanezi, R. B., Lopes, S. A., de Miranda, M. P., Wulff, N. A., Volpe, H. X. L., & Ayres A. J. (2020). Overview of citrus Huanglongbing spread and management strategies in Brazil. *Tropical Plant Pathology*, 45, 251-264. https://doi.org/10.1007/s40858-020-00343-y

Bernardini, C., Franco, A., Russo, R., Livingston, T., Gmitter Jr., F. G., Levy, A.,

- & Vashisth T. (2024). An efficient method for the extraction and the quantitative determination of callose from HLB-affected and healthy citrus. *Frontiers in Agronomy*, 6, 1307566. https://doi.org/10.3389/fagro.2024.1307566
- Bové, J. M. (2006). Huanglongbing: a destructive, newly-emerging, century-old disease of citrus. *Journal of Plant Pathology*, 88(1), 7–37. https://doi.org/10.1371/journal.pone.0111
- Cervantes-Santos, J. A., Villar-Luna, H., Bojórquez-Orozco, A. M., Díaz-Navarro, J. E., Arce-Leal, A. P., Santos-Cervantes, M. E., Claros, M. G., Méndez-Lozano, J., Rodríguez-Negrete, E. A., & Leyva-López N. E. (2025). Huanglongbing as a persistent threat to citriculture in Latin America. *Biology (Basel)*, *14*(4), 335. https://doi.org/10.3390/biology14040335.
- Cifuentes-Arenas, J. C., Beattie, G. A. C., Pena, L., & Lopes, S. A. (2019). *Murraya paniculata* and *Swinglea glutinosa* as short-term transient hosts of '*Candidatus* Liberibacter asiaticus' and implications for the spread of Huanglongbing. Phytopathology *109*(12), 2064-2073. https://doi.org/10.1094/PHYTO-06-19-0216-R.
- Deng, B., Wang, W., Ruan, C., Deng, L., Yao, S., & Zeng K. (2020). Involvement of *CsWRKY70* in salicylic acid-induced citrus fruit resistance against *Penicillium digitatum*. *Horticulture Research*, 7, 157. https://doi.org/10.1038/s41438-020-00377-y.
- Dong, L., Chen, S., Shang, L., Du, M., Mo, K., Pang, S., Zheng, L., Xu, L., Lei, T., He, Y., & Zou, X. (2024). Overexpressing *CsSABP2* enhances tolerance to Huanglongbing and citrus canker in *C. sinensis*. *Frontiers in Plant Science*, *15*, 1472155. https://doi.org/10.3389/fpls.2024.147215
- Doyle, J. J., & Doyle, J. L. (1990). Isolation of plant DNA from fresh tissue. *Focus*, 12,
- Etxeberria, E., & Narciso, C. (2015). Anatomy of The Citrus Leaf Petiole: Healthy vs.

- Huanglongbing. *Acta Horticulturae*, *1065*, 891–897. https://doi.org/10.17660/ActaHortic.2015.1065.110
- Fan, J., Chen, C., Yu, Q., Khalaf, A., Achor, D. S., Brlansky, R. H., Moore, G. A., Li, Z. G., & Gmitter Jr., F. G. (2012). Comparative transcriptional and anatomical analyses of tolerant rough lemon and susceptible sweet orange in response to 'Candidatus Liberibacter asiaticus' infection. Molecular Plant-Microbe Interactions, 25(11), 1396-1407. http://dx.doi.org/10.1094/MPMI-06-12-0150-R.
- Garrido-Cardenas, J. A., Mesa-Valle, C., Manzano-Agugliaro, F. (2018). Trends in plant research using molecular markers. *Planta*, 247, 543–557. https://doi.org/10.1007/s00425-017-2829-y.
- Gottwald, T. R., da Graça, J. V. & Bassanezi, R. B. (2007). Citrus Huanglongbing: the pathogen and its impact. *Plant Health Progress*. https://doi.org/10.1094/PHP-2007-0906-01-RV.
- Grafton-Cardwell, E. E., Stelinski, L. L., Stansly, P. A. (2013). Biology and management of asian citrus psyllid, vector of the Huanglongbing pathogens. *Annual Review of Entomology*, 58, 413-432. https://doi.org/10.1146/annurev-ento-120811-153542.
- Hall, D. G., Hentz, M. G., & Stover, E. (2017). Field survey of Asian citrus psyllid (Hemiptera: Liviidae) infestations associated with six cultivars of *Poncirus trifoliata* (Rutaceae). *Florida Entomology*, 100(3), 667-668.
- Iftikhar, Y., Rauf, S., Shahzad, U., & Zahid, M. A. (2016). Huanglongbing: pathogen detection system for integrated disease management—a review. *Journal of the Saudi Society of Agricultural Sciences*, 15(1): 1-11. https://doi.org/10.1016/j.jssas.2014.04.00
- Jagoueix, S., Bové, J. M., & Garnier, M. (1994).

 The phloem-limited bacterium of greening disease of citrus is a member of the α subdivision of the Proteobacteria.

 International Journal of Systematic

- *Bacteriology*, 44(3), 379–386. https://doi.org/10.1099/00207713-44-3-379.
- Koeda, S., Onouchi, M., Mori, N., Pohan, N. S., Nagano, A. J., & Kesumawati, E. (2021). A recessive gene *pepy-1* encoding Pelota confers resistance to Begomovirus isolates of PepYLCIV and PepYLCAV in *Capsicum annuum. Theoretical and Applied Genetics*, *134* (9), 2947-2964. https://doi.org/10.1007/s00122-021-03870-7.
- Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: molecular evolutionary genetics analysis across computing platforms. *Molecular Biology and Evolution*, *35* (6), 1547–1549. https://doi.org/10.1093/molbev/msy096.
- Lee, J. A., Halbert, S. E., Dawson, W. O., Robertson, C. J., Keesling, J. E., & Singer, B. H. (2015). Asymptomatic spread of Huanglongbing and implications for disease control. *Proceedings of the National Academy of Sciences of the United States of America*, 112(24), 7605-7610.
 - https://doi.org/10.1073/pnas.1508253112.
- Li, J., Li, L., Pang, Z., Kolbasov, V. G., Ehsani, R., Carter, E. W., & Wang, N. (2019). Developing citrus Huanglongbing (HLB) management strategies based on the severity of symptoms in HLB-endemic citrus-producing regions. *Phytopathology*, 109 (4), 582-592. https://doi.org/10.1094/PHYTO-08-18-0287-R
- Mafra, V., Kubo, K. S., Alves-Ferreira, M., Ribeiro-Alves, M., Stuart, R. M., Boava, L. P., Rodrigues, C. M., & Machado, M. A. (2012). Reference genes for accurate transcript normalization in citrus genotypes under different experimental conditions. *PLoS One*, 7(2), e31263. https://doi.org/10.1371/journal.pone.0031263.
- Miles, G. P., Stover, E., Ramadugu, C., Keremane, M. L., & Lee R. F. (2017). Apparent tolerance to Huanglongbing in citrus and citrus-related germplasm. *HortSci.*, 52(1), 31–39. https://doi.org/110.21273/HORTSCI11374-16.

- Nadeem, M. A., Nawaz, M. A., Shahid, M. Q., Doğan, Y., Comertpay, G., Yıldız, M., Hatipoğlu, R., Ahmad, F., Alsaleh, A., Labhane, N., Özkan, H., Chung, G., & Baloch F. S. (2018). DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. Biotechnological Biotechnology & Equipment, *32*. 261-285. https://doi.org/10.1080/13102818.2017.1 400401.
- Nugroho, K., Purwito, A., Sukma, D., Kosmiatin, M., Santoso, T. J., Husni, A., Martasari, C. and Lestari, P. (2025). Molecular diversity of citrus genotypes using *callose synthase* 7 gene markers linked to Huanglongbing resistance. *Jurnal Agronomi Indonesia*, 53(2), 212-223. https://dx.doi.org/10.24831/jai.v53i2.649
- Pandey, S. S., Hendrich C., Andrade M. O., & Wang, N. (2022). *Candidatus* Liberibacter: from movement, host responses, to symptom development of citrus Huanglongbing. *Phytopathology*, 112, 55-68. https://doi.org/10.1094/PHYTO-08-21-0354-FI.
- Parker, J. K., Wisotsky, S. R., Johnson, E. G., Hijaz, F. M., Killiny, N., Hilf, M. E., & La Fuente, L. D. (2013). Viability of 'Candidatus Liberibacter asiaticus' prolonged by addition of citrus juice to culture medium. Phytopathology, 104 (1), 15-26. http://dx.doi.org/10.1094/PHYTO-05-13-0119-R.
- Prasetyaningrum, P., Purwantoro, A., & Subandiyah, S. (2012). Genetics diversity analysis of six difference varieties of pomelo (*Citrus maxima* (Burm.)Merr.) for resistance to Huanglongbing using RAPD markers, *Vegetalika*, *1*(2): 78-85. https://doi.org/10.22146/veg.1521.
- Qiu, W., Soares, J., Pang, Z., Huang, Y., Sun, Z., Wang, N., Grosser, J., & Dutt, M. (2020). Potential mechanisms ofAtNPR1 mediated resistance against Huanglongbing citrus. (HLB) in International Journal of Molecular Sciences, 21(6), 2009. https://doi.org/10.3390/ijms21062009.

- Ramadugu, C., Keremane, M. L., Halbert, S. E., Duan, Y. P., Roose, M. L., Stover, E., & Lee, R. F. (2016). Long-term field evaluation reveals Huanglongbing resistance in citrus relatives, Plant 100(9), 1858-1869. Disease, https://doi.org/10.1094/PDIS-03-16-0271-RE.
- Sechler, A., Schuenzel, E. L., Cooke, P., Donnua, S., Thaveechai, N., Postnikova, E., Stone, A. L., Schneider, W. L., Damsteegt, V. D., & Schaad, N. W. (2009). Cultivation of 'Candidatus Liberibacter asiaticus', 'Ca. L. africanus', and 'Ca. L. americanus' associated with Huanglongbing. Phytopathology, 99(5), 480-486. https://doi.org/10.1094/PHYTO-99-5-0480.
- Sievers, F., & Higgins, D. G. (2014). Clustal Omega. Current Protocols in Bioinformatics, 48(1), 3-13. https://doi.org/10.1002/0471250953.bi03
- Tatarinova, T. V., Chekalin, E., Nikolsky, Y., Bruskin, S., Chebotarov, D., McNally, K. L., & Alexandrov N. (2016). Nucleotide diversity analysis highlights functionally important genomic regions. Scientific Reports, 6, 35730. https://doi.org/10.1038/srep35730.
- Tsai, C. H., Su, H. J., Liao, Y. C., & Hung, T. H. (2006). First report of the causal agent of Huanglongbing ("Candidatus Liberibacter asiaticus") infecting kumquat in Taiwan. Disease. 90. 1360. https://doi.org/10.1094/PD-90-1360C.
- Tsai, C. H., Hung, T. H., & Su, H. J. (2008). Strain identification and distribution of citrus Huanglongbing bacteria in Taiwan. Botanical Studies, 49, 49-56.
- Untergasser, A., Nijveen, H., Rao, X., Bisseling, T., Geurts, R., & Leunissen J. A. M. (2007). Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Research, *35*, 71-74. https://doi.org/10.1093/nar/gkm306.
- Weber, K. C., Mahmoud, L. M., Stanton, D., Welker, S., Qiu, W., Grosser, J. W., Levy, A., & Dutt M. (2022). Insights into the mechanism of Huanglongbing tolerance in Australian finger lime (Citrus australasica). Frontiers in Plant Science,

- 1019295. https://doi.org/10.3389/fpls.2022.101929
- Welker, S., Pierre, M., Santiago, J. P., Dutt, M., Vincent, C., & Levy A. (2022). Phloem transport limitation in Huanglongbingaffected sweet orange is dependent on phloem-limited bacteria and callose. Tree Physiology, 379-390. *42*(2): https://doi.org/10.1093/treephys/tpab134.
- Wu, H., Hu, Y., Fu, S., Zhou, C., & Wang, X. (2020).Coordination of multiple regulation pathways contributes to the tolerance of a wild citrus species (Citrus ichangensis **'2586'**) against Huanglongbing. **Physiological** and Molecular Plant Pathology, 109, 101457. https://doi.org/10.1016/j.pmpp.2019.1014 57.
- Wu, Q., Moniruzzaman, M., Yan, H., Lv, Y., Jiang, B., Jiang, N., & Zhong, Y. (2021). The CsNPR1 gene expression modulation in citrus and understanding the defense mechanism against huanglongbing by screening CsNPR1-interacting proteins, Scientia Horticulturae, 288, 110375. https://doi.org/10.1016/j.scienta.2021.110 375.
- Ye, J., Coulouris, G., Zaretskaya, L., Cutcutache, I., Rozen, S., & Madden, T. (2012). Primer-BLAST: a tool to design targetspecific primers for Polymerase Chain Reaction. BMC Bioinformatics, 13, 134.
- Zhao, P., Yang, H., Sun, Y., Zhang, J., Gao, K., Wu, J., Zhu, C., Yin, C., Chen, X., Liu, Q., Xia, Q., Li, Q., Xiao, H., Sun, H. X., Zhang, X., Yi, L., Zhou, C., Kliebenstein, D. J., Fang, R., Wang, X., & Ye, J. (2025). Targeted MYC2 stabilization confers citrus Huanglongbing resistance. Science, 191-198.

https://doi.org/10.1126/science.adq7203