

The Correlation between Iron and Protein Intake in the Hemoglobin Levels of the Faculty of Medicine Students, Unram

Rifana Cholidah^{1*}, Emmy Amalia², Ario Danianto², Dyah Purnaning², Asti Ananda²

¹Bagian Gizi dan Metabolisme, Fakultas Kedokteran dan Ilmu Kesehatan, Universitas Mataram, Nusa Tenggara Barat, Indonesia;

²Fakultas Kedokteran dan Ilmu Kesehatan, Universitas Mataram, Nusa Tenggara Barat, Indonesia;

Article History

Received : January 05th, 2026

Revised : January 10th, 2026

Accepted : January 30th, 2026

*Corresponding Author:

Rifana Cholidah, Fakultas Kedokteran dan Ilmu Kesehatan Universitas Mataram, Mataram, Indonesia;
Email:

rifana.cholidah@unram.ac.id

Abstract: Anaemia is a global burden disease that mostly occurs in the reproductive age. About 31.2% of women of reproductive age (15-49 years) have anaemia. This condition may affect oxygen transport in the body and interfere with some bodily functions. Several factors may induce anaemia; iron deficiency is one of them. An amount of iron and protein intake may contribute to haemoglobin levels. This study aims to determine the correlation between iron and protein intake and haemoglobin levels among students in the Faculty of Medicine at the University of Mataram. This is an observational analytic study using cross-sectional methods that includes students aged 17-20 years old. Data is taken in May–June 2024 using a spectrophotometer for checking haemoglobin levels. Iron and protein intake were traced by a 24-hour food records questionnaire over 2 days. Results: There are 118 samples with 25.42% male and 74.58% female. Normal mean haemoglobin levels were detected in this study (12.59 ± 0.82). The correlation tests, with the t-test for iron and protein intake, are not significant, with p-values of 0.246 and 0.254, respectively. Also, total protein and iron intake from this study, with an Anova F-test, is not significant, with a p-value of 0.408. The amount of consumption of iron and protein intake is not significant in the hemoglobin levels of Faculty of Medicine Students of the University.

Keywords: Anemia, medical student, mataram, iron, protein.

Introduction

Anaemia is a condition in which haemoglobin (Hb) levels are below normal, so the capacity of oxygen transport is inadequate physiologically. It can be described as a reduction in the proportion of red blood cells (erythrocytes) (Billet, 1990; Duryea and Schell, 2023). As we know, red blood cells contain a protein called haemoglobin that delivers oxygen to the tissues throughout the body. Within the normal range, haemoglobin varies by age and gender. The level of haemoglobin in children is 11.0 to 16.0 g/dL, whereas in adults, it is 13.5 to 18.0 g/dL for men and 12.0 to 15.0 g/dL for women. In special conditions like pregnancy, it is based on trimester, but overall must be greater than 10.0 g/dL (Wang, 2019; O’Neil, 2017). The

World Health Organisation (WHO) categorizes anemia when Hb levels are lower than 12.0 g/dL for females and 13.0 g/dL for males (Safiri et al., 2019). Several factors lead to anaemia, such as low nutrition, loss of iron heavily from blood and sweat, food containing high phytate, low stomach acid, absorption disturbance in the gut, loss of blood because of surgery and menstruation, or many factors that are related to blood loss (Thompson et al., 2011).

Anaemia is not a diagnosis but a clinical manifestation of an underlying disease. About 40% of children and 30% of reproductive-age women experience anaemia (Duryea and Schell, 2023; Safiri et al., 2019). WHO reported in 2019 that global anaemia prevalence was 29.9%, which is equivalent to over half a billion women aged 15-49 years old (WHO, 2019). In Indonesia,

anaemia is still a global burden disease that mostly affects adolescents, especially girls. About 31.2% of women of reproductive age (15-49 years) had anaemia in 2019, according to the WHO (WHO, 2019; Sari *et al.*, 2022). The impact of anaemia has significantly disturbed adolescent health because of inadequate oxygen transport; further, it interferes with cognitive function, inhibiting the growth and development of psychomotor. Most of the population has anemia because of iron deficiency (Samson *et al.*, 2022).

Some studies have variation in the results; a study of 190 women in Bantul reported that the iron intake in anaemic respondents was low and significantly associated with anaemia (Hardianti *et al.*, 2020). Another study showed that donors with high heme-iron intake may maintain iron stores, enabling recovery of Hb levels after blood donation (Timmer *et al.*, 2020). However, a study of medical students in Samratulangi University demonstrated that there was no significant relationship between iron intake and protein intake with the haemoglobin levels (Matayane *et al.*, 2014). About 30% of the population has an iron deficiency that leads to anaemia. Iron oral supplementation significantly increases haemoglobin levels with 100 mg every 8 hours as the dosage. This efficacy is equivalent with or without vitamin C consumption (Li *et al.*, 2020). Inadequate iron intake may raise the risk of anaemia 3.09-fold in adolescents, and there is a positive correlation between iron intake and haemoglobin levels ($p = 0.03$). On the other hand, protein may support the iron metabolism and haemoglobin synthesis (Jumiyati *et al.*, 2023; Yanti *et al.*, 2024).

Protein consumption with adequate intake is associated with higher haemoglobin levels ($p = 0.00$). In adolescents, insufficient protein intake is associated with a 30-fold higher risk of anaemia (Jumiyati *et al.*, 2023; Erningtyas *et al.*, 2022). The protein enhances the transport and absorption of iron. An intervention of combining iron-rich foods with protein may raise haemoglobin by 2.17 g/dL. Protein-deficient diets may exacerbate the anaemia, while protein supplementation improves the outcome of anaemia, as confirmed by a systematic review (Erningtyas *et al.*, 2022; Harahap *et al.*, 2023). This research topic, with medical students as participants, has not been conducted in the

province of West Nusa Tenggara; therefore, we conclude that it is important to conduct this topic in our area.

Methods

Study design

This is an observational analytic study with a cross-sectional approach that was conducted from May to June 2024. Respondents have different protein and iron intake based on their habits.

Population and sample

This study included students in the Faculty of Medicine at the University of Mataram with inclusion and exclusion criteria. Students in 17-20 who registered as active students in the Faculty of Medicine at The University of Mataram and were willing to contribute to this research are the study. Students with infectious diseases such as HIV and tuberculosis, a history of blood disorders, chronic diarrhoea for several days before, and students who have received or donated any type of blood in the last 3 months are excluded. We used non-probability sampling with the total sampling method. The analytic nonparametric calculation has been performed, and the minimum sample size is 66 individuals, with P1 at 36.1% and P2 at 63.9%, based on previous research.¹⁷ To anticipate dropout, we add 10% of the sample, and it will be a minimum of 73 samples.

Data collection

Data were collected primarily using a 24-hour food records questionnaire over 2 consecutive days. Then haemoglobin was tested using a spectrophotometer. Peripheral blood was taken and mixed with Drabkin's solution to cleave haemoglobin to become cyanmethemoglobin, and absorption capacity was tested on a 540 nm wavelength in a photoelectric calorimeter or spectrophotometer.

Data analysis

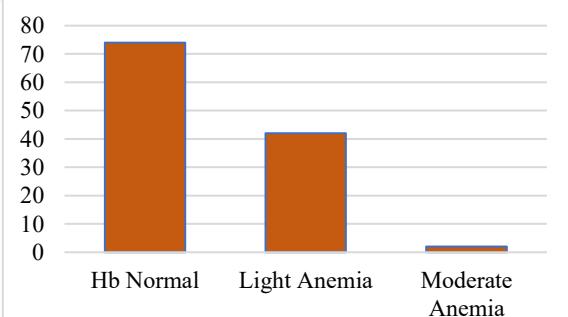
All the data that we have collected, we presented in percentages in a table. Demographic data were analysed univariately. Food records data and hemoglobin were analyzed in a bivariate analysis with an unpaired T test.

Ethical statement

Ethical clearance has been obtained in the Ethics Commission health research of the University of Mataram with ethic number 061/UN18.F8/ETIK/2024.

Results and Discussion

There were 118 students in the Faculty of Medicine at The University of Mataram have completed this study, with a proportion of males and females of 25.42% and 74.58%, respectively. The mean of iron intake was 13.97 ± 15.75 mg, and protein intake was 81.86 ± 46.82 mg per day. All the sample characteristics were recorded in Table 1.


Table 1. Sample characteristics

Characteristics	n=118
	n/mean (%/SD)
Gender	
Male	30 (25,42)
Female	88 (74,58)
Age (years)	$19,22 \pm 0,79$
Height (cm)	$158,94 \pm 8,49$
Weight (kg)	$57,61 \pm 15,93$
Body Mass Index (kg/m ²)	$22,57 \pm 4,81$
Hemoglobin levels (mg/dl)	$12,59 \pm 0,83$
Mean iron intake (mg)	$13,97 \pm 15.75$
Mean protein intake (g/hr)	$81,86 \pm 46,82$

Table 2. Bivariate analysis tests each variable

Variables	Hemoglobin levels
	p-value
Iron intake	0,246
Protein intake	0,254
Iron and protein intake	0,408

The measurement of haemoglobin using a spectrophotometer found that 37.29% were anaemic (below 12 g/dL), with 42 persons (35.59%) having light anaemia, and 2 of them (1.70%) were moderate anaemic (graphic 1). Statistical correlation tests for iron intake and protein were not significant, with p-values of 0.246 and 0.254, respectively (p-values above 0.05). When iron intake and protein intake were combined, the statistical correlation test was also not significant (p-value > 0.05) with p p-value of 0.408. The correlation tests are recorded in Table 2.

Figure 1. Anemia prevalence in faculty of Medicine The University of Mataram

Discussion

Our study aims to determine the relationship between iron and protein intake on haemoglobin levels in students of the Faculty of Medicine at the University of Mataram. The results of statistical tests of the relationship between iron and protein intake partially (individually) obtained a p-value of 0.246 and 0.254; the p-value is greater than 0.05. For the relationship between iron and protein intake together, the p-value was 0.408, which was greater than 0.05. This shows there is no correlation between iron and protein intake on haemoglobin levels in students of the Faculty of Medicine, The University of Mataram.

In some of the same studies, there are varying research results on the analysis of the relationship between iron and protein intake to haemoglobin levels. Some studies reported a relationship Pradanti *et al.*, Hardianti *et al.*, and Sitorus *et al.*. Also, some other studies reported no relationship between iron and protein intake and haemoglobin levels (Matayane *et al.*, 2014; Kristin *et al.*, 2022; Indraswari *et al.*, 2024). The absence of a relationship between iron intake and haemoglobin levels can be caused by several factors, including sufficient iron reserves and good iron absorption to meet the body's need for iron Indraswari *et al.*, 2024. In people whose iron intake is less but whose haemoglobin levels are normal or not anaemic, it can be caused by iron reserves in the body still meeting their needs. Women have iron stores of about 300 mg, which can last for 6 months. Thus, even though iron intake is lower, the body can meet the iron requirement from iron stores (Kristin *et al.*, 2022).

The relationship between iron and haemoglobin has been described in previous literature. Iron is a major component in the process of hematopoiesis or haemoglobin synthesis, especially in the final stages of heme formation. Heme iron has higher bioavailability than non-heme iron. Absorption is around 7 to 22% compared to non-heme iron, which ranges from 1 to 6%. In addition, other components, such as biotin, vitamin B6, and vitamin B12, are required for globin synthesis (Sitorus *et al.*, 2024). In the final stage, the incorporation of ferrous iron into protoporphyrin III occurs. The process is catalysed by the enzyme ferrocatalase. Furthermore, the interaction between heme and globin will produce haemoglobin. In addition to iron consumption, it is important to pay attention to the consumption of other micronutrients that can increase the absorption and metabolism of iron (Putri and Fauzia, 2022; Indartanti & Kartini, 2014).

The relationship between iron and haemoglobin has been widely described. For iron absorption to occur effectively, an acidic atmosphere and reductants are required. For example, vitamin C (Lewa, 2017). The presence of vitamin C will create an acidic environment that facilitates the reduction of ferric iron to ferrous iron (Reka *et al.*, 2016; Baha *et al.*, 2021). Ferro will be more easily absorbed by the small intestine. The intestine absorbs about 19 to 15% of iron from the food consumed. During growth and in daily life, such as during menstruation, the amount of iron estimated to be released by the body is 0.4-0.5 mg/day. So, at least women release about 30 mg of iron every month due to the menstrual process. So, additional supplements such as iron supplements are important to maintain iron levels in the body and prevent iron deficiency anaemia (Taruna *et al.*, 2023; Soedijanto *et al.*, 2015).

An interventional study that combined the administration of iron and protein showed a greater increase in haemoglobin than an isolated intervention. About 200 mg iron tablets, when consumed together with adequate protein intake, may elevate haemoglobin by 1.55 g/dL over 30 days (Harahap *et al.*, 2023). There are some recommendations for increasing the hemoglobin that may prevent anemia, a low-dose oral iron supplementation (<5 mg/kg/day) for 3-6 months depending on hemoglobin level, ensure the

protein intake ≥ 1 g/kg/day to enhance the iron absorption and particularly can be found in meat or legumes, also a combined interventions of iron and protein may maximize the hemoglobin recovery (Erningtyas *et al.*, 2022; Harahap *et al.*, 2023; Lewa, 2017; Rehmat *et al.*, 2025).

Depleted iron stores may precede anaemia, which is characterised by a lower level of haemoglobin (DeLoughery, 2017). Iron plays a role in integrating protoporphyrin IX into heme, and this process is facilitated by an enzyme in the mitochondria (Finch, 1958). An animal protein source, such as meat and fish, contains heme iron that may be absorbed 2-3 times more efficiently than non-heme plant iron. Because of protein aid to the iron regulatory enzymes, iron may be liberated from heme in the intestines (Finch, 1958; Nurjannah *et al.*, 2021). Iron and protein intake have interdependent determinants for haemoglobin synthesis. While iron is a foundational element for heme synthesis, protein has a role in facilitating iron absorption and improving the bioavailability.

Conclusion

This study showed no significant correlation between iron intake and protein intake with haemoglobin levels in students of the Faculty of Medicine, The University of Mataram. Several factors are involved in the digestion of iron and protein. Moreover, some people have maintained normal haemoglobin levels because the body still has spare iron and protein. Further investigation into the factors involved in iron and protein intake may suggest new directions for other research.

Acknowledgement

While compiling our research, the author received valuable help and support from various individuals. We would like to thank all participants in this study. We would like to thank the University of Mataram for funding this research.

References

Billett, H. H. (1990). Hemoglobin and Hematocrit. In H. K. Walker (Eds.) et al., *Clinical Methods: The History,*

Physical, and Laboratory Examinations. (3rd ed.). Butterworths.

Duryea, E. L., & Schell, R. C. (2024). Anemia. In *Queenan's Management of High-Risk Pregnancy: An Evidence-Based Approach*, 99–104. <https://doi.org/10.1002/9781119636540.ch12>

Wang, T. F. Approach to Anemia. <https://ccme.osu.edu/WebCastsFiles/781Approach%20to%20Anemia%20Final%20-%204.pdf>

O'Neil, J. (2017). Diagnosing and Classifying Anemia in Adult Primary Care.

Safiri, S., Kolahi, A. A., Noori, M., Nejadghaderi, S. A., Karamzad, N., Bragazzi, N.L., et al. (2021). Burden of anemia and its underlying causes in 204 countries and territories, 1990–2019: results from the Global Burden of Disease Study 2019. *J Hematol Oncol*, 14(1), 1–16. <https://doi.org/10.1186/s13045-021-01202-2>

Thompson, J. L., Manore, M. M., Vaughan, L. A., Gottschall-Pass, K., & MacLellan, D. L. (2011). The science of nutrition (Canadian Edition). Pearson Education, Inc.

World Health Organization. (2019). Prevalence of anaemia in women of reproductive age (aged 15–49) (%). [https://www.who.int/data/gho/data/indicators/indicator-details/GHO/prevalence-of-anaemia-in-women-of-reproductive-age-\(%\)](https://www.who.int/data/gho/data/indicators/indicator-details/GHO/prevalence-of-anaemia-in-women-of-reproductive-age-(%))

Sari, P., Herawati, D. M. D., Dhamayanti, M., & Hilmanto, D. (2022). Anemia among Adolescent Girls in West Java, Indonesia: Related Factors and Consequences on the Quality of Life. *Nutrients*, 14(18), 1–13. <https://doi.org/10.3390/nu14183777>

Samson, K. L. I., Fischer, J. A. J., & Roche, M. L. (2022). Iron Status, Anemia, and Iron Interventions and Their Associations with Cognitive and Academic Performance in Adolescents: A Systematic Review. *Nutrients*, 14(1), 1–35. <https://doi.org/10.3390/nu14010224>

Timmer, T. C., de Groot, R., Rijnhart, J. J. M., Lakerveld, J., Brug, J., Perenboom, C. W. M., Baart, M. A., Prinsze, F. J., Zalpuri, S., van der Schoot, E. C., de Kort, W. L. A. M., & van den Hurk, K. (2020). Dietary intake of heme iron is associated with ferritin and hemoglobin levels in Dutch blood donors: results from Donor InSight. *Haematologica*, 105(10), 2400–2406. <https://doi.org/10.3324/haematol.2019.229450>

Li N, Zhao G, Wu W, Zhang M, Liu W, Chen Q, et al. (2020). The Efficacy and Safety of Vitamin C for Iron Supplementation in Adult Patients With Iron Deficiency Anemia: A Randomized Clinical Trial. *JAMA Netw Open*, 3(11), 1–9. doi:10.1001/jamanetworkopen.2020.23644

Jumiyati, J., Witradharma, T. W., Krisnasary, A., & Yulianti, R. (2023). Anemia among Adolescent Girls: Its Association with Protein and Iron Intake. *Media Gizi Indonesia*, 18(1SP), 14–20. <https://doi.org/10.20473/mgi.v18i1SP.14-20>

Yanti, S., Sari, Y. A. P., & Meilina , A. (2024). Diet, Protein, Iron and Vitamin C Intake on Anemia Status of Adolescent Girls. *Journal of Applied Nursing and Health*, 6(1), 177–183. <https://doi.org/10.55018/janh.v6i1.192>

Erningtyas, C., Faizah, Z., & Amalia, R. B. (2022). Overview Of Protein and Fe Intake with The Event of Anemia in Adolescent: Systematic Review. *PLACENTUM Jurnal Ilmiah Kesehatan dan Aplikasinya*, 10(3), 170 – 179 . <https://doi.org/10.20961/placentum.v10i3.58355>

Harahap, A.N., Purba, R., & Nainggolan, E.S. (2023). Literature Review: The Effectiveness of the Blood Supplement Tablet Program and Protein Intake in the Prevention of Anemia in Young Girls. *Media Gizi Ilmiah Indonesia*, 1(1), 33–42. <https://doi.org/10.62358/mgii.v1i1.9>

Pradanti, C. M., M, W., & K, H. P. (2015). Hubungan Asupan Zat Besi (Fe) dan Vitamin C dengan Kadar Hemoglobin pada Siswi Kelas VIII SMP Negeri 3 Brebes. *Jurnal Gizi*, 4(1), 24 – 29. <https://doi.org/10.26714/jg.4.1.2015.%25p>

Hardianti, A., Paratmanitya, Y., Nurunniyah, S., Jannah, M., & Hamdani, R. (2020). Correlation between Knowledge about Anemia, Iron, and Folate Consumption with Anemia Status among Premarital Women in Bantul Regency, Yogyakarta. *Journal of nutritional science and vitaminology*, 66(Supplement), 376–379. <https://doi.org/10.3177/jnsv.66.S376>

Sitorus, E. P. R., Handayani, S., Balyas, A. B., Widayati, R., Fatmari, F., & Permatasari S. (2024). The Correlation between Protein, Iron, and Vitamin C Intake with Hemoglobin Levels in Pregnant Women. *Mutiara Medika: Jurnal Kedokteran dan Kesehatan*, 24(1), 19–24. <https://doi.org/10.18196/mmjkk.v24i1.17311>

Matayane, S. G., Bolang, A. S. L., & Kawengian, S. E. S. (2014). Hubungan antara Asupan Protein dan Zat Besi dengan Kadar Hemoglobin Mahasiswa Program Studi Pendidikan Dokter angkatan 2013 Fakultas Kedokteran Universitas Sam Ratulangi. *eBiomedik*, 2(3). <https://doi.org/10.35790/ebm.v2i3.5742>

Kristin, N., Jutomo, L., & Boeky, D. L. A. (2022). Hubungan Asupan Zat Gizi Besi Dengan Kadar Hemoglobin Remaja Putri. *Sehat Rakyat: Jurnal Kesehatan Masyarakat*, 1(3), 189–95. <https://doi.org/10.54259/sehatrakyat.v1i3.1077>

Indraswari, D. A. R., Padmiari, I. A. E., & Suarjana, I. M. (2024). Konsumsi Seng (Zn) dan Zat Besi (Fe) dan Kadar Hemoglobin Pada Siswi SMA Negeri 1 Gianyar. *Jurnal Ilmu Gizi : Journal of Nutrition Science*, 13(2), 86–93. <https://doi.org/10.33992/jig.v13i2.2776>

Putri, T. F., & Fauzia, F. R. (2022). Hubungan Konsumsi Sumber Zat Besi dengan Kejadian Anemia pada Remaja Putri SMP dan SMA di wilayah Bantul. *Jurnal Ilmu Keperawatan dan Kebidanan*, 13(2), 400–11. <https://doi.org/10.26751/jikk.v13i2.1540>

Indartanti, D., & Kartini, A. Hubungan Status Gizi dengan Kejadian Anemia pada Remaja Putri. *Journal of Nutrition College*, 3(2), 310–6. <https://doi.org/10.14710/jnc.v3i2.5438>

Lewa, A. F. (2016). Hubungan Asupan Protein, Zat Besi dan Vitamin C dengan Kejadian Anemia pada Remaja Putri di MAN 2 Model Palu. *Jurnal Publikasi Kesehatan Masyarakat Indonesia*, 3(1), 26 – 31. 10.20527/jpkmi.v3i1.2736

Septiyasih, A. R. N., Widajanti, L., & Nugraheni, S. A. (2016). Hubungan Asupan Zat Besi, Asam Folat, Vitamin B12 dan Vitamin C dengan Kadar Hemoglobin Siswa di SMP Negeri 2 Tawangharjo Kabupaten Grobogan. *Jurnal Kesehatan Masyarakat*, 4(4), 521–8. <https://doi.org/10.14710/jkm.v4i4.14282>

Baha, M. H., Patimah, S., Sumiyati., Gobel, F. A., & Nurlinda, A. (2021). Hubungan Konsumsi Zat Besi, Protein, Vitamin C dengan Kejadian Anemia Remaja Putri Kabupaten Majene. *Window of Public Health Journal*, 2(4), 657–69. <https://doi.org/10.33096/woph.v2i4.258>

Taruna, W. G. M., Mahayani, I. A. M., S, A. M., & Shammakh, A. A. (2023) Hubungan Pemberian Tablet Fe Terhadap Peningkatan Kadar Hemoglobin Pada Remaja Wanita Risiko Anemia. *COMSERVA : Jurnal Penelitian dan Pengabdian Masyarakat*, 2(11), 2574–81. <https://doi.org/10.59141/comserva.v2i11.674>

Soedijanto, S. G. A, Kapantow, N. H., & Basuki, A. (2015). Hubungan Antara Asupan Zat Besi Dan Protein Dengan Kejadian Anemia Pada Siswi SMP Negeri 10 Manado. *Pharmacon*, 4(4). <https://doi.org/10.35799/pha.4.2015.10239>

Rehman, T., Agrawal, R., Ahamed, F., Das, S., Mitra, S., Kumar, D., Sethy, C., Kanungo, S., Bhattacharya, D., & Pati, S. (2025). Optimal dose and duration of iron supplementation for treating iron deficiency anaemia in children and adolescents: A systematic review and meta-analysis. *Plos one*, 20(2), 1 – 23. <https://doi.org/10.1371/journal.pone.0319068>

DeLoughery, T. G. (2017). Iron Deficiency Anemia. *The Medical clinics of North America*, 101(2), 319–332.

https://doi.org/10.1016/j.mcna.2016.09.00
4

FINCH, C. A. (1957, May). The role of iron in hemoglobin synthesis. In *Conference of hemoglobin*.

Nurjannah, T. A., Elba, F., Nirmala, S. A., Mandiri, A., & Wijaya, M. (2021). Relationship between Nutrition Intake and Hemoglobin Levels in Toddlers Aged 12-24 Months. *Althea Medical Journal*, 8(1), 13-17.
<https://doi.org/10.15850/amj.v8n1.2115>