# Development of Formative Assessment Instruments Misconception Check to Analyze the Conception of Thermodynamics in High School Students

Clarinta Alvani<sup>1</sup>, Ridwan Efendi<sup>1\*</sup>, & Rizki Zakwandi<sup>1</sup>

<sup>1</sup>Physics Education Study Program, Universitas Pendidikan Indonesia, Indonesia

\*Corresponding author: ridwanefendi@upi.edu

Received: 15th September 2025; Accepted: 27th November 2025; Published: 8th December 2025

DOI: https://dx.doi.org/10.29303/jpft.v11i2.10220

Abstract - The demands of formative assessment in the kurikulum merdeka should ideally be able to diagnose students' conceptual patterns in depth. However, common assessment practices are still limited to instruments that only measure correct or incorrect answers, so they cannot reveal conceptual understanding. The gap between these demands and reality has led to the development of more targeted instruments, especially for complex thermodynamics material. This study aims to develop a formative assessment instrument in the form of a misconception check to analyze high school students' conceptions of thermodynamics. The method used is quantitative with an instrument development approach based on the Mardapi model. The developed instrument is a formative assessment tool in the form of a misconception check with a multiple-choice format, with answer options designed to represent various categories of conceptions. The instrument was tested on 262 students from three high schools, and its validity was evaluated through content validity, construct validity, and readability tests. After a series of evaluations, it was found that 3 items were invalid and were eliminated, leaving 33 items that were suitable for use. This instrument has a unidimensionality value of 21%, an average Aiken's V coefficient of 0.96, and reliability of 0.92. The results of the study indicate that the developed formative misconception check assessment instrument is feasible and effective for analyzing the conceptions held by high school students on thermodynamics material. Therefore, this instrument can help teachers specifically analyze students' conceptions and design targeted learning.

Keywords: Formative Assessment; Misconception Check; Conception; Thermodynamics.

## INTRODUCTION

The success of education depends heavily on three main pillars: curriculum, learning, and assessment(Aditomo, 2024). The Merdeka Curriculum emphasizes the integration of learning and assessment, placing formative assessment as an integral part of the learning cycle. This approach is in line with strategies such as *Teaching at the* Right Level (TaRL) and Backward Design (Wiggins & McTighe, 2005), which prioritize the achievement of learning objectives and assessment adjustments to ensure that all students achieve a deep understanding of concepts. educational assessment has focused more on summative assessment (Assessment of Learning) to measure the final learning However, the Merdeka outcomes.

Curriculum encourages a paradigm shift to formative assessment (Assessment as Learning) that is oriented towards providing feedback and continuous improvement of the learning process (Schuwirth & Van Der Vleuten, 2011).

In learning, especially physics, students build new knowledge based on their experiences and understanding (Kiray & Discourse and understanding (Kiray & Discourse and understanding is referred to as conception (Dewi & Discourse and Dewi & D

This stage is in line with the scientific concept (Saputri et al., 2021).

The importance of formative assessment has been recognized in theory, but in practice, there is a significant gap. In fact, the formative assessments conducted by teachers are not yet optimal. Interviews with teachers and physics direct observations show that formative assessments are often only conducted orally in class or through homework assignments without in-depth discussion. A study by (Suherly et al., 2023) shows that only 40% of teachers conduct formative assessments in the form of quizzes or assignments, and only 20% provide feedback to students. Other research results also indicate that teachers do not yet have a complete understanding of the requirements of the Merdeka Curriculum, as well as difficulties in designing assessment instruments (Liliawati et al., 2022).

Commonly used assessment instruments have limitations. Conventional multiple-choice tests often only measure correct or incorrect answers. without recognizing of patterns errors misconceptions (Chandrasegaran et al., 2007). The journal Bhaw et al. (2024) also highlights the weakness of conventional multiple-choice questions, namely the lack of effectiveness of distractors, which can make questions too difficult or unreliable. The conventional scoring system (dichotomous scoring) only gives a score of 1 for correct answers and 0 for incorrect or unanswered questions. The main weakness of this system is that it cannot accommodate the partial knowledge that students may have (Burfitt, 2017).

Meanwhile, essay tests, although effective in revealing misconceptions as stated by Resbiantoro et al.(2022), are impractical to implement on a large scale because they require a long time to assess (Sadler, 1998). As a result, students are

often assessed as lacking creativity and unable to analyze physics concepts because educators only rely on questions from textbooks (Wulandari et al., 2023). This limitation hinders educators in identifying students' conceptions and misconceptions, even though mastery of correct conceptions is crucial in the Merdeka Curriculum, especially in physics subjects such as thermodynamics, which has many applications in everyday life.

To address this gap, this study aims to effective a more formative assessment instrument. Referring to the Classroom Assessment Techniques (CAT) concept proposed by Cross & Angelo, the misconception check instrument can be a solution. This method is specifically designed to reveal common misconceptions among students. Previous research by Holbeck et al. (2014) shows that the use of misconception checks can improve online learning and provide better information for educators.

previous studies Although identified various tools used to analyze misconceptions (Resbiantoro et al., 2022) and demonstrated the effectiveness of assessment, there are still gaps in the development of practical, informative instruments that can be used to analyze concepts in depth. This study attempts to fill this gap by developing a formative misconception check assessment instrument in partial multiple-choice format specifically designed to analyze student conceptions.

Partial multiple choice in assessment method reviews, Frary (1989) reported a method in which choices are weighted and students receive scores according to their choices. Students learn several aspects of a concept before becoming fully competent and can be described as having partial knowledge of the concept.

The answer choices in this instrument not only serve as distractors, but are also designed to present various types of conceptions that students may have. Furthermore, this study will categorize student conceptions into five levels, namely: scientific conception, almost scientific conception, misconception, lucky guess, and non-understanding of a concept-(Derya Kaltakci, 2012; Jannah & Rahmi, 2020; Kiray & Simsek, 2021). The development of this formative misconception check assessment instrument is expected to provide a practical yet informative tool for educators to identify and address students' conceptions more effectively.

### RESEARCH METHODS

This study adopted a quantitative method with an instrument development approach that refers to the Mardapi model (Mardapi, 2020). The aim was to create a misconception check-type formative assessment instrument to analyze the concepts of senior high school (SMA) students on thermodynamics material. This development procedure involved several namely: Compiling steps, (1) specifications, (2) Writing test questions, (3) Reviewing test questions, (4) Conducting test trials, (5) Analyzing test items, (6) Revising test items, and (7) Assembling the test as shown in the following Figure 1.

The research participants consisted of 262 students from three high schools in Bandung City who were selected using *stratified random sampling* based on their 2024 new student admission report card (PPDB) scores, which were high, medium, and low. The sample demographics are presented in Table 1.

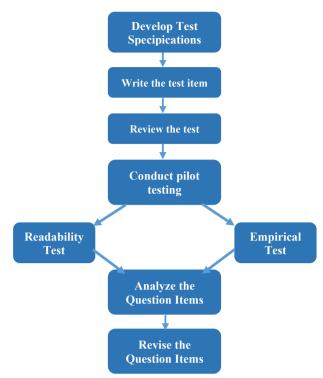



Figure 1. Research Design Flowchart

Table 1. Sample Demographics

| No  | Aspect  | High School Grade |        |     |  |  |  |  |  |  |
|-----|---------|-------------------|--------|-----|--|--|--|--|--|--|
| 110 | Aspect  | High              | Middle | Low |  |  |  |  |  |  |
| 1.  | Gender  |                   |        |     |  |  |  |  |  |  |
|     | Boys    | 46                | 30     | 67  |  |  |  |  |  |  |
|     | Girls   | 21                | 41     | 57  |  |  |  |  |  |  |
| 2.  | Ages    |                   |        |     |  |  |  |  |  |  |
|     | (Years) |                   |        |     |  |  |  |  |  |  |
|     | 16-17   | 67                | 71     | -   |  |  |  |  |  |  |
|     | 17-18   | -                 | =      | 124 |  |  |  |  |  |  |

The data collection procedure was carried out through instrument testing after undergoing expert validation and readability testing. Data analysis was conducted quantitatively to evaluate the feasibility and effectiveness of the instrument. The analysis included content validity and readability testing using Aiken's V Index, with the following formula:

$$V = \frac{\Sigma s}{n(c-1)} \tag{1}$$

 $s = r - l_0 \tag{2}$ 

Explanation:

V = validity coefficient

n = number of validators

c = highest rating

r = score given by validators

 $l_0$  = lowest score



The validity coefficient (V) value obtained from the subsequent calculation will be interpreted by matching it to the Aiken's V index table. In this study, there were 5 validators with a rating category of 1-5 (5 categories), so the validity coefficient (V) value must be V > 0.80 to be considered valid with a p value of 0.040 or a 40% error probability. And for the readability test based on the number of validators and the probability of error (p). In this study, there were 11 validators with assessment categories 1-5 (5 categories), so the validity coefficient (V) value must be V > 0.70 to be considered valid with a p value of 0.035 or a 35% probability of *error*.

Empirical data analysis uses the *Rasch* model with *Winsteps* software. This *Rasch* model analysis includes a unidimensionality test, a reliability test (*item reliability*), an item quality test (*category function, item polarity,* and *item fit)*, and a reliability test (*item reliability*). The results will be interpreted in the following table:

The unidimensionality test or prerequisite test is used to ensure that the test measures what it is supposed to measure. The results are interpreted based on the raw variance explained by the measure.

Table 2. Unidimensionality Value Criteria

| Table 2. Official chains              | value Citteria |
|---------------------------------------|----------------|
| Raw variance explained by measure (%) | Criteria       |
| 20 < $Rve \le 40$                     | Met            |
| 40 < <i>Rve</i> ≤ 60                  | Suitable       |
| $60 < Rve \le 100$                    | Excellent      |

(Sumintono & Widhiarso, 2015)

**Table 3.** Criteria for Unexplained Variance in Contrast

| Unexplained Variance in Contrast (%) | Criteria    |
|--------------------------------------|-------------|
| < 3                                  | Exceptional |
| 3 – 5                                | Very Good   |
| 5 – 10                               | Good        |
| 10 -15                               | Fair        |
| > 15                                 | Good        |
|                                      |             |

(Sumintono & Widhiarso, 2015)

To reinforce the unidimensionality test results, the analysis was also reviewed using two additional indicators. Category Function was used to ensure that each answer choice functioned effectively in distinguishing ability levels. Meanwhile, Correlation Order verified the suitability between the difficulty level of the questions and the correlation of student abilities, which reinforced the overall validity of the instrument.

After conducting the prerequisite test, a reliability test was conducted to measure the consistency and reliability of the test results. This test produced Person Reliability, Item Reliability, and Cronbach Alpha (KR-20).

Table 4. Interpretation of Reliability Test

| Statistics     | Index Value | Criteria  |
|----------------|-------------|-----------|
|                |             |           |
| Item and       | < 0.67      | Low       |
| Pearson        | 0.67 - 0.80 | Moderate  |
| Reliability    | 0.81 - 0.90 | Good      |
|                | 0.91 - 0.94 | Very Good |
|                | > 0.94      | Very Good |
| Cronbach Alpha | < 0.50      | Low       |
| (KR-20)        | 0.50 - 0.60 | Moderate  |
|                | 0.61 - 0.70 | Good      |
|                | 0.70 - 0.80 | High      |
|                | > 0.80      | Very High |

In addition to reliability indicators, Rasch Model analysis also displays the Separation value. This value is important because it shows the instrument's ability to distinguish the level of difficulty of the items. The higher the Separation value, the better the instrument is at identifying groups of items. The number of groups identified can be calculated using a formula.

$$H = \frac{[(4 \times separation) + 1]}{3} \tag{3}$$

A validity test is conducted for each item to assess its quality. This test is obtained from the item fit order and can be seen from the outfit mean square (MNSQ)



value, outfit Z-Standard (ZSTD), and point measure correlation (PT Measure Corr).

Table 5. Item Fit Criteria

| Table 3. Hem    | 1 tt Citteria      |
|-----------------|--------------------|
| Indicator       | Acceptable Values  |
| Outfit MNCO     | 0.5 < MNSQ <       |
| Outfit MNSQ     | 1.5                |
| ZSTD Outfit     | -2.0 < ZSTD < +2.0 |
| Pt Measure Corr | 0.4 < Pt Measure   |
|                 | <i>Corr</i> < 0.85 |

(Sumintono & Widhiarso, 2015)

The results of each criterion are then interpreted based on the *fit-statistic* value criteria according to Sumintono & Widhiarso (2015) in Table 6 below.

**Table 6.** Interpretation of Fit-Statistic Item

| Criteria                   | Description   |
|----------------------------|---------------|
| All three indicators are   | Very Suitable |
| met                        | very Sultable |
| Two of the three           | Suitable      |
| indicators are met         | Sultable      |
| One of the three           | Less suitable |
| indicators is met          | Less suitable |
| None of the indicators are | Not compliant |
| met                        | Not compliant |

(Sumintono & Widhiarso, 2015)

In addition, the level of difficulty of the items (item measure) and item maps are used to map the level of difficulty of the items to the abilities of the students. These item maps can be divided into five interpretation zones to identify the level of difficulty in more detail, ranging from very hard, hard, medium, easy, and very easy.

# - Very Hard

These items are located at the top of the map and are only answered by students with the highest abilities.

# - Hard

These items are located above the average scale and can only be answered by students with above-average abilities.

#### - Medium

This item is located around the midpoint of the logit scale, effective for

distinguishing students with average abilities.

# - Easy

This item is located below the average of the logit scale. Students with abilities below average to average can generally answer these items correctly.

# - Very Easy

This item is located at the bottom of the items. They have a very low (large negative) logit value. These questions can be answered correctly by almost all students.

To assess the validity of the test instrument, the information function (TIF) and Standard Error of Measurement (SEM) are used. The information function measures how well the instrument measures specific abilities (Sumaryanta, 2021), while SEM unavoidable addresses errors measurement. The relationship between the two is inversely proportional; an increase in information correlates with a decrease in SEM, indicating an increase in precision (Retnawati, 2020; Setiawati et al., 2013). To see the suitability of the test with the students' abilities based on the information function and SEM, it can be classified as follows:

Table 7. Classification of Ability Estimation

| Category  |
|-----------|
| Very Low  |
| Low       |
| Moderate  |
| High      |
| Very High |
|           |

# RESULTS AND DISCUSSION Results

The characteristics of the *misconception check* instrument were analyzed through content validity, readability testing, and data analysis using the *Rasch* model with the help of Winsteps.

Content validity testing was conducted to evaluate the extent to which the

items could represent thermodynamics material.

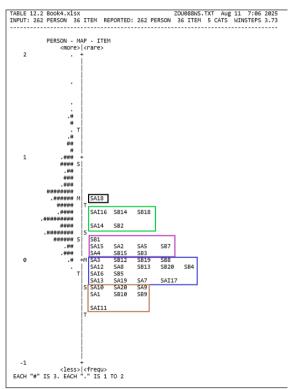
Table 8. Content Validity Test Results

| Question | $\Sigma(S)$ | N<br>(C-1) | V    | Note      |  |  |  |  |  |  |
|----------|-------------|------------|------|-----------|--|--|--|--|--|--|
| 1A       | 20          | 20         | 1.00 | Very High |  |  |  |  |  |  |
| 1B       | 20          | 20         | 1.00 | Very High |  |  |  |  |  |  |
| 2A       | 20          | 20         | 1.00 | Very High |  |  |  |  |  |  |
| 2B       | 20          | 20         | 1.00 | Very High |  |  |  |  |  |  |
| 3A       | 20          | 20         | 1.00 | Very High |  |  |  |  |  |  |
| 3B       | 20          | 20         | 1.00 | Very High |  |  |  |  |  |  |
| 4A       | 20          | 20         | 1.00 | Very High |  |  |  |  |  |  |
| 4B       | 20          | 20         | 1.00 | Very High |  |  |  |  |  |  |
| 5A       | 20          | 20         | 1.00 | Very High |  |  |  |  |  |  |
| 5B       | 20          | 20         | 1.00 | Very High |  |  |  |  |  |  |
| 6AB*     | 20          | 20         | 1.00 | Very High |  |  |  |  |  |  |
| 7A       | 20          | 20         | 1.00 | Very High |  |  |  |  |  |  |
| 7B       | 20          | 20         | 1.00 | Very High |  |  |  |  |  |  |
| 8A       | 20          | 20         | 1.00 | Very High |  |  |  |  |  |  |
| 8B       | 20          | 20         | 1.00 | Very High |  |  |  |  |  |  |
| 9A       | 20          | 20         | 1.00 | Very High |  |  |  |  |  |  |
| 9B       | 20          | 20         | 1.00 | Very High |  |  |  |  |  |  |
| 10A      | 20          | 20         | 1.00 | Very High |  |  |  |  |  |  |
| 10B      | 20          | 20         | 1.00 | Very High |  |  |  |  |  |  |
| 11AB*    | 20          | 20         | 1.00 | Very High |  |  |  |  |  |  |
| 12A      | 20          | 20         | 1.00 | Very High |  |  |  |  |  |  |
| 12B      | 20          | 20         | 1.00 | Very High |  |  |  |  |  |  |
| 13A      | 20          | 20         | 1.00 | Very High |  |  |  |  |  |  |
| 13B      | 20          | 20         | 1    | Very High |  |  |  |  |  |  |
| 14A      | 20          | 20         | 1    | Very High |  |  |  |  |  |  |
| 14B      | 20          | 20         | 1    | Very High |  |  |  |  |  |  |
| 15A      | 20          | 20         | 1    | Very High |  |  |  |  |  |  |
| 15B      | 20          | 20         | 1    | Very High |  |  |  |  |  |  |
| 16AB*    | 20          | 20         | 1    | Very High |  |  |  |  |  |  |
| 17AB*    | 20          | 20         | 1    | Very High |  |  |  |  |  |  |
| 18A      | 20          | 20         | 1.0  | Very High |  |  |  |  |  |  |
| 18B      | 20          | 20         | 1.00 | Very High |  |  |  |  |  |  |
| 19A      | 20          | 20         | 1.00 | Very High |  |  |  |  |  |  |
| 19B      | 20          | 20         | 1.00 | Very High |  |  |  |  |  |  |
| 20A      | 20          | 20         | 1.00 | Very High |  |  |  |  |  |  |
| 20B      | 20          | 20         | 1.00 | Very High |  |  |  |  |  |  |
| Overall  | 720         | 720        | 1.00 | Very High |  |  |  |  |  |  |
| average  | 140         | 720        | 1.00 | very mign |  |  |  |  |  |  |

Readability tests were conducted to ensure that the language and format of the instruments were easily understood by students.

Table 8. Readability Test Results

| Question        | $\Sigma(S)$ | N<br>(C-1) | V           | Note      |
|-----------------|-------------|------------|-------------|-----------|
| 1A              | 41          | 44         | 0.93        | Very High |
| 1B              | 44          | 44         | 1.00        | Very High |
| 2A              | 43          | 44         | 0.97        | Very High |
| 2B              | 44          | 44         | 1.00        | Very High |
| 3A              | 44          | 44         | 1.00        | Very High |
| 3B              | 42          | 44         | 0.95        | Very High |
| 4A              | 42          | 44         | 0.95        | Very High |
| 4B              | 42          | 44         | 0.95        | Very High |
| 5A              | 40          | 44         | 0.90        | Very High |
| 5B              | 41          | 44         | 0.93        | Very High |
| 6AB*            | 44          | 44         | 1.00        | Very High |
| 7A              | 42          | 44         | 0.95        | Very High |
| 7B              | 44          | 44         | 1.00        | Very High |
| 8A              | 41          | 44         | 0.93        | Very High |
| 8B              | 42          | 44         | 0.95        | Very High |
| 9A              | 42          | 44         | 0.95        | Very High |
| 9B              | 42          | 44         | 0.95        | Very High |
| 10A             | 44          | 44         | 1.00        | Very High |
| 10B             | 44          | 44         | 1.00        | Very High |
| 11AB*           | 42          | 44         | 0.95        | Very High |
| 12A             | 43          | 44         | 0.97        | Very High |
| 12B             | 42          | 44         | 0.95        | Very High |
| 13A             | 40          | 44         | 0.90        | Very High |
| 13B             | 42          | 44         | 0.95        | Very High |
| 14A             | 44          | 44         | 1.00        | Very High |
| 14B             | 44          | 44         | 1.00        | Very High |
| 15A             | 38          | 44         | 0.86        | Very High |
| 15B             | 41          | 44         | 0.93        | Very High |
| 16AB*           | 44          | 44         | 1.00        | Very High |
| 17AB*           | 44          | 44         | 1.00        | Very High |
| 18A             | 41          | 44         | 0.93        | Very High |
| 18B             | 41          | 44         | 0.93        | Very High |
| 19A             | 44          | 44         | 1.00        | Very High |
| 19B             | 42          | 44         | 0.95        | Very High |
| 20A             | 44          | 44         | 1.00        | Very High |
| 20B             | 44          | 44         | 1.00        | Very High |
| Overall average | 152<br>8    | 1584       | 0.964<br>65 | Very High |


Unidimensionality is a crucial characteristic that assumes that the instrument measures only a single construct. The results are as follows:



```
TABLE 23.0 Book4.xlsx
                                                 ZOU088WS.TXT Aug 11 7:06 2025
INPUT: 262 PERSON 36 ITEM REPORTED: 262 PERSON 36 ITEM 5 CATS WINSTEPS 3.73
     Table of STANDARDIZED RESIDUAL variance (in Eigenvalue units)
                                                 -- Empirical --
                                                                   Modeled
Total raw variance in observations
                                                45.6 100.0%
                                                                    100.0%
 Raw variance explained by measures
                                                 9.6 21.0%
                                                                     22.5%
    Raw variance explained by persons =
                                                 5.2 11.4%
                                                                     12.2%
    Raw Variance explained by items
                                                 4.4
                                                       9.6%
                                                                      10.3%
 Raw unexplained variance (total)
                                                36.0
                                                      79.0% 100.0%
   Unexplned variance in 1st contrast =
                                                 2.3
                                                        5.0%
                                                              6.4%
                                                        4.9%
    Unexplned variance in 2nd contrast =
                                                 2.2
                                                              6.1%
    Unexplned variance in 3rd contrast =
                                                 1.9
                                                        4.1%
                                                              5.2%
   Unexplned variance in 4th contrast =
                                                              5.1%
                                                 1.8
                                                        4 0%
    Unexplned variance in 5th contrast =
                                                              4.9%
```

Figure 2. Unidimensionality Test Results

After passing the *unidimensionality* test, an *item-person* map test was conducted, which is a key feature of *Rasch* analysis that provides a visual representation of the characteristics of the instrument. This allows us to see the distribution of question difficulty levels and student abilities simultaneously. The results are as follows:



**Figure 3.** *Person Item Map* of 36 Questions

Next, a *category function* analysis was conducted to test whether each answer option on the multiple-choice instrument

functioned effectively and had a logical sequence.

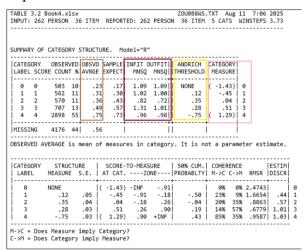



Figure 4. Category Function Test Results

To test the effectiveness of the answer options, an analysis of the probability curve of students choosing each option was conducted.

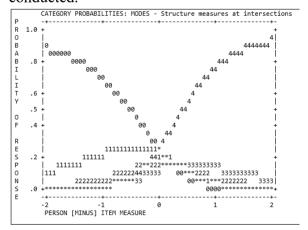



Figure 5. Category Probability Curve

The formative assessment data was analyzed using *Item Polarity*. This analysis aimed to examine the consistency of each item with the overall measurement scale.

|          | REAL SE    | P.: 1.3 | I REL.:                | .63        | . ITEM | : REA |      |      |      |     |      |      |              |
|----------|------------|---------|------------------------|------------|--------|-------|------|------|------|-----|------|------|--------------|
|          |            |         |                        |            |        |       |      |      |      |     |      |      |              |
|          |            | TOTAL   |                        |            |        |       |      |      |      |     |      |      |              |
|          |            |         | MEASURE                |            |        |       |      |      |      |     |      |      |              |
| 18       | 236        | 129     | .58                    | .06        | 1.71   | 6.2   | 1.81 | 6.2  | .07  | .44 | 17.2 | 20.3 | <b>SA18</b>  |
| 14       | 390        | 129     |                        |            |        |       |      |      |      |     |      |      |              |
| 24       | 410        | 133     | 04<br>.44<br>02        | .07        | .80    | -1.8  | .92  | 4    | .16  | .34 | 34.6 | 29.2 | SB4          |
| 32       | 296        | 133     | .44                    | .06        | .84    | -2.0  | .90  | -1.0 | .21  | .43 | 27.8 | 20.8 | SB14         |
| 27       | 406        | 133     | 02                     | .07        | .85    | -1.3  | .83  | -1.1 | .24  | .34 | 34.6 | 27.8 | SB8          |
| 6        | 343        | 129     | .15                    | .06        | 1.01   | .1    | 1.08 | .7   | .25  | .37 | 26.6 | 21.7 | SA2          |
| 25       |            |         | 11                     | .07        | .88    | 9     | .93  | 3    | .26  |     | 28.6 |      |              |
| 2        |            |         | 48                     | .07        | 1.09   | .7    | 1.08 | .5   | .27  | .23 | 58.2 | 56.0 | SAI11        |
| 16       |            | 129     | .35                    | .06        | 1.31   | 3.3   | 1.34 | 2.9  | .27  |     | 9.4  |      |              |
| 5        | 438        | 129     | 35                     | .09        | 1.20   | 1.2   | 1.10 | .5   | .28  |     | 45.3 |      |              |
| 26       |            | 133     | .12                    | .07        | 1.05   | .6    | 1.24 | 1.7  | .29  |     | 18.8 |      |              |
| 36<br>29 | 419        | 133     | 08                     | .07        | 1.27   | 2.0   | 1.24 | 1.3  | .29  |     | 51.1 |      |              |
| 29<br>30 | 458        | 133     | 33<br>.02              | .09        | .99    | 1.0   | .90  | 4    | .30  |     | 31.6 |      |              |
| 4        | 398<br>851 | 133     | 19                     | .07        | 1 22   | -1.3  | 1 10 | -1.0 | .31  |     | 36.4 |      |              |
| 15       |            |         | 19                     | .05        | 1 00   | 2.1   | 1.10 | 1.2  | 34   |     | 30.5 |      |              |
| 10       |            | 129     | 19                     | .05<br>.08 | 1.00   | .1    | .89  | 5    | .34  |     | 35.2 |      |              |
| 11       | 395        | 129     | 19                     | .00        | 96     | 3     | .50  | 2    | .35  |     | 32.8 |      |              |
| 17       | 354        | 129     | 09<br>.10              | .07        | 1 05   | 5     | 1 05 | 0    | 35   |     | 24.2 |      |              |
| 19       | 411        | 129     | 17                     | 98         | 1 02   | .,    | 90   | - 5  | 36   |     | 41.4 |      |              |
| 21       | 355        | 133     | .21                    | .08        | 1 29   | 2 9   | 1 20 | 1.5  | 36   |     | 17.3 |      |              |
| 20       | 422        | 129     | 24                     | - 08       | .92    | 5     | . 79 | -1.1 | . 36 |     | 39.8 |      |              |
| 13       | 430        | 129     | 29                     | .08        | 1.09   | .6    | .84  | 7    | .37  |     | 43.8 |      |              |
| 3        | 544        | 262     | .48                    | .04        | .94    | 9     | .92  | -1.1 | .38  |     | 21.1 |      |              |
| 28       | 457        | 133     | 29<br>.48<br>32<br>.01 | .09        | 1.07   | .5    | .98  | .0   | .40  |     | 48.9 |      |              |
| 7        | 374        | 129     | .01                    | .07        | .92    | 7     | .95  | 3    | .41  |     | 28.9 |      |              |
| 12       |            |         |                        |            |        |       |      |      |      |     | 43.0 |      |              |
| 34       | 288        | 133     | .47                    | .06        | 1.05   | .6    | 1.08 | .8   | .41  |     | 12.8 |      |              |
| 8        | 368        | 129     | .04                    | .07        | .84    | -1.6  | .78  | -1.7 | .41  |     | 23.4 |      |              |
| 9        | 347        | 129     | .13                    | .07<br>.05 | 1.07   | .8    | 1.02 | .2   | .42  |     | 15.6 |      |              |
| 1        |            |         | 13                     | .05        | 1.10   | 1.1   | .96  | 2    | .42  |     | 32.2 |      |              |
| 23       |            | 133     | .07                    | .07        | .98    | 2     | .89  | 7    | .47  | .36 | 28.6 | 25.7 | SB3          |
| 35       | 409        | 133     | 03                     | .07        | .96    | 3     | .80  | -1.2 | .49  | .34 | 33.1 | 29.2 | SB19         |
| 22       | 325        | 133     | .33                    | .06        | .63    | -4.9  | .61  | -4.1 | .49  | .41 | 33.8 | 20.8 | SB2          |
| 33<br>31 | 384<br>416 | 133     | .09                    | .07        | .83    | -1.6  | .77  | -1.6 | .49  | .37 | 21.1 | 30.6 | SB15<br>SB13 |
|          |            |         |                        |            |        |       | ·    |      | +    |     | ·    | +    |              |
| MEAN     | 428.2      | 145.6   | .00                    | .07        | 1.02   | .1    | .99  | .0   |      |     | 30.9 |      |              |

Figure 6. Correlation Order Results

Instrument reliability was conducted to analyze the performance of the instrument and students in greater depth. Next, *summary statistics* will present important data related to reliability, fit, and separation, which are crucial for understanding the overall quality of the instrument.

|        | TOTAL                                |                                 |                              |             | MODEL  |        | TME          |        | OUTF                 |            | ī                  |
|--------|--------------------------------------|---------------------------------|------------------------------|-------------|--------|--------|--------------|--------|----------------------|------------|--------------------|
|        | SCORE                                | COUNT                           | MEASU                        | RE          | ERROR  |        | 4NS0         | ZSTD   | MNSO                 | ZSTD       |                    |
| IEAN   | 58.8<br>9.7<br>77.0<br>35.0          | 20.0                            |                              | 57          | .20    | :      | 1.02         | .1     | .99                  | .1         |                    |
| AX.    | 77.0                                 | 20.0                            | 1.                           | 71          | .47    |        | 2.03         | 2.4    | 1.93                 | 2.6        |                    |
| IIN.   | 35.0                                 | 20.0                            |                              | 96          | .15    |        | .37          | -3.1   | .35                  | -3.0       |                    |
| DEL I  | RMSE .22<br>RMSE .20<br>OF PERSON M  | TRUE SD<br>EAN = .02            | .29                          | SEPAR       | RATION | 1.44   | PERS         | ON REL | IABILITY             | .63<br>.67 |                    |
| MIXA   | M EXTREME !<br>VALID RESPI           | SCORE:<br>ONSES: 55<br>MEASURED | 1 PERS<br>.6% (AP<br>(EXTREM | ON<br>PROXI | (MATE) | EXTREM | E) PER       | SON    |                      |            |                    |
|        | TOTAL                                | COUNT                           |                              |             | MODEL  |        | INF          | IT     | OUTF                 | IT         | ī                  |
|        | SCORE                                | COUNT                           | MEASU                        | RE          | ERROR  | - 1    | ansq         | ZSTD   | MNSQ                 | ZSTD       |                    |
| 1EAN   | 58.8                                 | 20.0                            |                              | 58          | .20    |        |              |        |                      |            |                    |
| .D.    | 9.8                                  | .0                              |                              | 40          | .11    |        |              |        |                      |            | ļ                  |
| MAX.   | 58.8<br>9.8<br>80.0<br>35.0          | 20.0                            | 3.                           | 52<br>86    | .15    |        | .37          | -3.1   | .35                  | -3.0       |                    |
| REAL I | RMSE .24<br>RMSE .23<br>OF PERSON M  | TRUE SD<br>TRUE SD              | .32                          | SEPA        | RATION | 1.31   | PERS<br>PERS | ON REL | IABILITY<br>IABILITY | .63        |                    |
| RSON I | RAW SCORE-TI                         | -MEASURE                        | CORRELAT                     | ION :       | .91 (  | appro  | kimate       | due t  | o missin             | g data     | )                  |
| NBAC   | H ALPHA (KR                          | -20) PERSO                      | N RAW SO                     | ORE '       | "TEST" | RELIA  | BILITY       | = .34  | (approx              | imate      | due to missing dat |
|        | MARY OF 36                           |                                 |                              |             |        |        |              |        |                      |            |                    |
|        | TOTAL<br>SCORE                       |                                 |                              |             | MODEL  |        | INF          | IT     | OUTF                 | IT         | Ī                  |
|        | SCORE                                | COUNT                           | MEASU                        | RE          | ERROR  | - 1    | 4NSQ         | ZSTD   | MNSQ                 | ZSTD       |                    |
| 1EAN   | 428.2                                | 145.6                           |                              | 99          | .07    | :      | 1.02         | .1     | .99                  | .0         |                    |
| .D.    | 144.6                                | 41.2                            |                              | 25          | .01    |        | .19          | 1.8    | .23                  | 1.7        |                    |
| IAX.   | 428.2<br>144.6<br>929.0<br>236.0     | 129.0                           | -:-                          | 58<br>48    | .09    |        | .63          | -4.9   | .61                  | -4.1       |                    |
|        |                                      | TOUR CO.                        | 24                           |             | 1      |        | *****        |        |                      |            |                    |
| DEL I  | RMSE .07<br>RMSE .07<br>DE ITEM MEAI | TRUE SD                         | .24                          | SEPAR       | RATION | 3.47   | ITEM         | REL    | IABILITY<br>IABILITY | .92        |                    |
|        | OF TIEN MEAN                         |                                 |                              |             |        |        |              |        |                      |            | 1                  |

Figure 7. Summary Statistics Results

To evaluate the quality of each item individually, an *item fit* analysis was conducted. This analysis focused on three main indicators: *Outfit Mean Square* (MNSQ), *Outfit Z-Standard* (ZSTD), and *Point Measure Correlation (Pt Mean Corr)*. An item can be considered valid if it meets two of the three categories.

|        |        |        | ITEM REP  |         |            |      |       |      |      |      |      | EPS 3. |       |      |
|--------|--------|--------|-----------|---------|------------|------|-------|------|------|------|------|--------|-------|------|
|        |        |        | 1 REL.:   |         |            |      |       |      |      |      |      |        |       |      |
|        | ****** |        | uzer      |         |            |      |       |      |      |      |      |        |       |      |
|        | TIEM 5 | INITAL | CS: MISF  | TI OKDI | EK .       |      |       |      |      |      |      |        |       |      |
|        |        |        |           |         |            |      |       |      |      |      |      |        |       |      |
| ENTRY  | TOTAL  | TOTAL  |           | MODEL   | IN         | FIT  | TUO   | FIT  | PT.  | -MEA | SURE | EXACT  | MATCH |      |
| NUMBER | SCORE  | COUNT  | MEASURE   | S.E.    | MNSQ       | ZSTD | MNSQ  | ZSTD | COF  | RR.  | EXP. | OBS%   | EXP%  | ITE  |
| 10     | 226    | 120    |           | 96      | +<br> 1 71 |      | 1 01  | 6 2  | Α    | 07   | 44   | 17 2   | 20.21 | CAT  |
| 14     | 200    | 120    | .56       | .00     | 1 07       | 0.2  | 1 56  | 2.0  | 6    | 15   | 22   | 25 0   | 20.5  | SA1  |
| 16     | 294    | 129    | - 35      | .07     | 1.31       | 3.3  | 1.34  | 2.9  | ř    | 27   | .41  | 9.4    | 18.5  | 541  |
| 21     | 355    | 133    | .21       | .06     | 1.29       | 2.9  | 1.20  | 1.5  | D    | .36  | .39  | 17.3   | 20.8  | SB1  |
| 36     | 419    | 133    | 08        | .07     | 1.27       | 2.0  | 1.24  | 1.3  | E    | . 29 | .33  | 27.8   | 30.7  | SB26 |
| 26     | 377    | 133    | .12       | .07     | 1.05       | .6   | 1.24  | 1.7  | F    | . 29 | .37  | 18.8   | 22.2  | SB7  |
| 4      | 851    | 262    | 19        | .05     | 1.22       | 2.1  | 1.16  | 1.2  | G    | .32  | .30  | 36.4   | 34.6  | SAII |
| 5      | 438    | 129    | 35        | .09     | 1.20       | 1.2  | 1.10  | .5   | Н.   | .28  | .25  | 45.3   | 43.8  | SA1  |
| 1      | 831    | 262    | 13        | .05     | 1.10       | 1.1  | .96   | 2    | I.   | .42  | .31  | 32.2   | 31.8  | SAI  |
| 2      | 929    | 262    | 48        | .07     | 1.09       | .7   | 1.08  | .5   | J.   | . 27 | .23  | 58.2   | 56.0  | SAI  |
| 13     | 430    | 129    | 29        | .08     | 1.09       | .6   | .84   | 7    | K.   | .37  | .27  | 43.8   | 40.1  | SA16 |
| 6      | 343    | 129    | .15       | .06     | 1.01       | .1   | 1.08  | .7   | L.   | . 25 | .37  | 26.6   | 21.7  | SA2  |
| 34     | 288    | 133    | .47       | .06     | 1.05       | .6   | 1.08  | .8   | М.   | .41  | .43  | 12.8   | 21.0  | SB18 |
| 28     | 457    | 133    | 32        | .09     | 1.07       | .5   | .98   | .0   | N.   | .40  | .27  | 48.9   | 48.6  | SB9  |
| 9      | 347    | 129    | .13       | .07     | 1.07       | .8   | 1.02  | .2   | 0    | .42  | .37  | 15.6   | 21.8  | SA5  |
| 17     | 354    | 129    | .10       | .07     | 1.05       | .5   | 1.05  | .4   | P.   | .35  | .36  | 24.2   | 21.7  | SA15 |
| 19     | 411    | 129    | 1/        | .08     | 1.02       | .2   | .90   | 5    | Q    | .36  | .29  | 41.4   | 32.9  | SAIS |
| 15     | 413    | 129    | 19        | .08     | 1.00       | .1   | .89   | 5    | K    | . 34 | .29  | 50.5   | 33.0  | SALS |
| 29     | 200    | 122    | 33        | .09     | .99        | .0   | .90   | 4    | 0    | 47   | 26   | 20 6   | 25.7  | 2016 |
| 11     | 200    | 120    | .07       | .07     | 96         | 2    | .00   |      | 9    | 25   | 21   | 22.0   | 20.7  | CVO  |
| 10     | 413    | 129    | - 19      | 98      | 96         | - 3  | 96    | - 2  | lo ' | 35   | 29   | 35.2   | 33 0  | SA7  |
| 35     | 409    | 133    | - 03      | .07     | .96        | - 3  | .80   | -1.2 | 'n   | 49   | 34   | 33.1   | 29.2  | SR19 |
| 7      | 374    | 129    | .01       | .07     | .92        | 7    | .95   | 3    | m    | .41  | .34  | 28.9   | 26.9  | SA3  |
| 31     | 416    | 133    | 07        | .07     | .95        | 4    | .77   | -1.4 | 1    | .51  | .33  | 31.6   | 30.6  | SB13 |
| 3      | 544    | 262    | .48       | .04     | .94        | 9    | .92   | -1.1 | k    | .38  | .43  | 21.1   | 20.3  | SAI  |
| 25     | 424    | 133    | 11        | .07     | .88        | 9    | .93   | 3    | j.   | . 26 | .32  | 28.6   | 31.7  | 585  |
| 20     | 422    | 129    | 24        | .08     | .92        | 5    | .79   | -1.1 | i.   | .36  | .28  | 39.8   | 35.2  | SA26 |
| 24     | 410    | 133    | 04        | .07     | .80        | -1.8 | .92   | 4    | h.   | .16  | .34  | 34.6   | 29.2  | SB4  |
| 32     | 296    | 133    | .44       | .06     | .84        | -2.0 | .90   | -1.0 | g    | .21  | .43  | 27.8   | 20.8  | SB14 |
| 30     | 398    | 133    | .02       | .07     | .86        | -1.3 | .85   | -1.0 | f.   | .31  | .35  | 31.6   | 27.6  | SB12 |
| 27     | 406    | 133    | 02        | .07     | .85        | -1.3 | .83   | -1.1 | e    | . 24 | .34  | 34.6   | 27.8  | SB8  |
| 8      | 368    | 129    | .04       | .07     | .84        | -1.6 | .78   | -1.7 | d.   | .41  | .34  | 23.4   | 23.2  | SA4  |
| 33     | 384    | 133    | .09       | .07     | .83        | -1.6 | .77   | -1.6 | ļ    | .49  | .37  | 21.1   | 22.1  | SB15 |
| 12     | 422    | 129    | 24        | .08     | .77        | -1.7 | .73   | -1.5 | D .  | .41  | .28  | 43.0   | 35.2  | SA9  |
| - 22   | 325    | 153    | .33       | .06     | .63        | -4.9 | 1 .61 | -4.1 | d    | .49  | .41  | 33.8   | 20.8  | 282  |
| MEAN   | 428.2  | 145.6  | MEASURE M | .07     | 1.02       | .1   | .99   | .0   |      |      |      | 30.9   | 29.6  |      |
| S.D.   | 144.6  | 41.2   | . 25      | .01     | .19        | 1.8  | .23   | 1.7  |      |      | 1    | 10.8   | 8.9   |      |

Figure 8. Analysis of the Quality of Each Item

Invalid items were excluded from the analysis, leaving 33 items to be analyzed to determine their level of difficulty (item measure). This analysis aimed to group the items to provide a clearer picture of the test's characteristics. This grouping was interpreted through item distribution maps (person item maps).

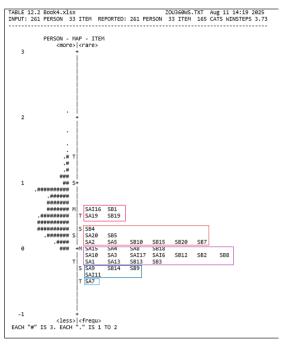



Figure 9. Person Item Map of 33 Items

Based on the results of the item map analysis, the items were identified as having varying levels of difficulty. To reinforce the findings in the person item maps, the data will then be analyzed by matching it with *the measure order*.

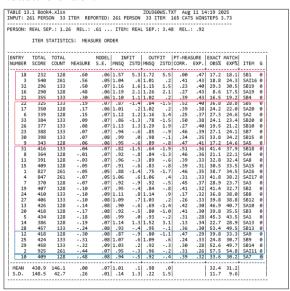



Figure 10. Measure Order Test Results

The process of creating information function curves and SEM began by exporting TIF data from Winsteps to Excel. Then, the SEM value was calculated using the formula  $SEM = 1\sqrt{I}$ , where I is the information value. This data was then

visualized in a scatter plot with the X-axis as the measure (ability) and the Y-axis as the TIF and SEM values.

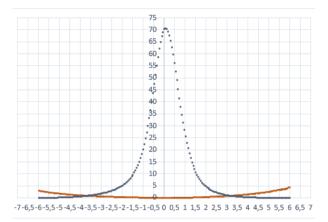



Figure 11. TIF and SEM Curves

#### Discussion

Based on the results of the above analysis, this formative assessment instrument in the form of a misconception check shows strong and reliable characteristics. The content validation of the instrument has been tested with a high Aiken's V coefficient (above 0.88) from experts, consisting of three physics lecturers and two physics teachers. The results can be seen in Table 6, showing that each item has been carefully evaluated and considered and representative thermodynamics material taught at the high school level (Aiken, 1985).

In addition, the results of the readability test, which can be seen in Table 7, show excellent results. Testing of 11 students produced an average Aiken's V coefficient of 0.96, which is well above the minimum value. This value proves that this instrument is easy to understand in terms of language and format by students, so it can be used without linguistic barriers.

The use of the Rasch model through Winsteps software, an approach that is highly relevant for analyzing dichotomous or polytomous data (Boone & Noltemeyer, 2017), further reinforces the quality of the instrument. Unidimensionality analysis with



PCA shows that the instrument consistently measures a single construct, namely students' conceptual understanding of thermodynamics. This is evidenced by *a raw variance* of 21%, which meets the minimum requirement of 20%, and an *unexplained variance* value in the range of 3% to 5%, indicating excellent criteria.

Although disordered thresholds were found in the *category function* analysis (), where each response category did not fully function in a logical order due to students with higher comprehension abilities sometimes tending to choose categories that should have been chosen by students with lower abilities, or vice versa, this could also have occurred because the instrument was not tested on a larger sample size, resulting in a lack of varied responses.

This indicates that the logical order of answer options does not fully function, but this instrument is still reliable (Engelhard & Wind, 2017). The Infit and Outfit MNSQ values for each category are within an acceptable range (0.5 to 1.5), indicating that the data as a whole remains consistent with the Rasch model and that the students' response patterns do not deviate significantly (Bond & Fox, 2013). This analysis is very important because it provides unique insights into the measure values of each incorrect answer category. Category 4 (correct answers) has a measure of 1.29 (the highest level of difficulty), while the other categories represent different types of misconceptions, ranging from almost scientific concepts (category 3 with a measure of 0.51) to non-understanding of a concept (category 0 with a measure of -1.43). This underscores that incorrect answers are as important as correct answers in diagnosing misconceptions and designing appropriate learning interventions (Backhaus, 2024; Derya Kaltakci, 2012;

Jannah & Rahmi, 2020; Kiray & Simsek, 2021).

The Item-Person Map visualizes the alignment between the difficulty level of test items and the abilities of 262 students. The distribution of student abilities concentrated in the range of 0 to +1.5 logits, which is in line with the distribution of the items. This map allows educators to identify the "concept zones" of students and determine which concepts are the most difficult (Cross & Angelo, 1993; Leonard, 2024). In addition, the category probability curve shows an ideal pattern: the probability of choosing the correct answer (category 4) increases as the learner's ability increases, while the probability of choosing a distractor (categories 0, 1, 2, 3) decreases. This pattern proves that each item functions well in distinguishing learners based on their ability levels, although the disordered thresholds indicate the need for revision of some items in the future.

Technically, the reliability of the instrument is very good with an item reliability value of 0.92(Sumintono & Widhiarso, 2015), indicating strong internal consistency. Item fit analysis shows that 33 of the 36 items are valid because they meet at least two of the three criteria set (Outfit MNSO, Outfit ZSTD, and Pt Mean Corr). The distribution of item difficulty levels, ranging from very easy to very difficult (divided into five categories), shows that this instrument is capable of measuring a wide spectrum of student abilities. Thus, although some improvements may be necessary, such as revising invalid items and testing on a larger sample, this instrument is, overall, a valid and reliable tool for identifying students' conceptions and misconceptions.

Based on a comprehensive analysis, the developed *Misconception Check* formative assessment instrument has strong



characteristics for analyzing students' conceptions of thermodynamics.

these characteristics First, are supported by strong content validity, a characteristic that has been confirmed through expert assessment using Aiken's V index. The results of the analysis show that the 36 comprehensively developed items represent the scope of the material, construction, and language, so that they can be used as an accurate and relevant assessment tool (Aiken, 1985). In addition, readability tests also reinforce the feasibility of this instrument. All items have an Aiken's V coefficient value above the minimum value set, with an overall average of 0.96, which is classified as "Very High" (Sumintono & Widhiarso, 2015). This high readability ensures that students' responses purely reflect their understanding, rather than being influenced by difficulties in interpreting ambiguous questions.

Second, the characteristics of this instrument are reinforced by Rasch model analysis. The unidimensionality test proves that the items consistently measure a single construct, namely thermodynamic concepts, so that each finding can be interpreted specifically. The item-person distribution map also shows the distribution of items in accordance with the distribution of student abilities, ensuring that this instrument is capable of identifying concepts at various levels of understanding. Furthermore, the category function proved to work well. The analysis shows that each response category (scores 0 to 4) has a high probability in sequential ability ranges, confirming that the designed polytomous scale functions as intended.

Third, evidence of characteristics also comes from *the correlation order of* the items and reliability. The analysis results show that 35 of the 36 items support each other in measuring the same construct

uniformly. In addition, the very high *item* reliability value of 0.92 (Sumintono & Widhiarso, 2015), is a strong argument for the instrument's feasibility, as it shows that the items are very consistent and reliable. Finally, *item fit* analysis confirmed this feasibility, with 33 of the 36 items having good results and items that did not meet the criteria being eliminated. Thus, this instrument is a robust, consistent, and reliable tool that is suitable as a basis for pedagogical decision-making.

The validity of the *Misconception Check* formative assessment instrument was evaluated through TIF curve and SEM analysis. The results of this analysis show that the instrument has a good level of validity and reliability for use.

It can be seen from the Information Function (TIF) curve that it has a peak or highest information point on the map of around 70.0 logit. This shows that the test information of the instrument is greatest when used and tested on students who have abilities of around 70.0 logit. The second cut-off point of the curve is at teta -3.5 and +3.2, indicating that the Misconception Check formative assessment test instrument on thermodynamics material is reliable for determining the level of conceptions from a range of -3.5 with very low abilities to +3.2 with very high abilities.

# **CONCLUSION**

Based on the research results, the developed formative assessment instrument, Misconception Check, is proven to be valid, reliable, and suitable for diagnosing high school students' conceptions of thermodynamics. This is supported by strong content validity and readability tests that show that the questions are easy to understand. Analysis using the Rasch model further reinforced these characteristics, such as unidimensionality, which proved that the

instrument measured only a single construct. Although there were slight discrepancies in some items, overall the data produced was very reliable. Of the 36 items, 33 were proven to be of high quality and suitable, with excellent reliability of 0.92 and varying levels of difficulty, making it an effective and reliable tool. In practical terms, this instrument can be used by teachers to provide targeted feedback and design appropriate learning, which can ultimately improve students' conceptual understanding. Theoretically, this research contributes to the literature on formative assessment in physics education, particularly in the use of the Rasch model to ensure instrument quality. These results reinforce developing framework for assessment instruments that can measure and identify For optimization, conceptions. recommended to conduct a broader sample test to improve generalization and develop usage guidelines for educators to interpret the results effectively.

### **ACKNOWLEDGMENT**

We would like to thank SMAN 24 Bandung, SMAN 11 Bandung, and SMAN 16 Bandung for giving the researchers the opportunity to conduct this study.

### REFERENCES

- Aditomo, A. (2024). Panduan Pembelajaran dan Asesmen Pendidikan Anak Usia Dini, Pendidikan Dasar, dan Pendidikan Menengah Edisi Revisi Tahun 2024.
- Aiken, L. R. (1985). Three coefficients for analyzing the reliability and validity of ratings, educational and psychological measurument. *Educational and Psychological Measurement*, 45(1), 131–142.
- Aufschnaiter, C. von, & Alonzo, A. C. (2018). Foundations of formative assessment: Introducing a learning progression to guide preservice

- physics teachers' video-based interpretation of student thinking. *Applied Measurement in Education*, 31(2), 113–127. https://doi.org/10.1080/08957347.201 7.1408629
- Backhaus, A. (2024). *Diagnosing Misconceptions*. Carpentries. https://carpentries.github.io/lesson-development-training/misconceptions-mcqs.html
- Bhaw, N., Kriek, J., & Rampho, G. (2024). The Use of Multiple-choice Questions as an Assessment Tool in First-year University Physics Modules. *Journal of Education and Practice*, *July*, 0–3. https://doi.org/10.7176/jep/16-1-07
- Bond, T. G., & Fox, C. M. (2013). Applying the Rasch Model. In *Applying the Rasch Model*. Routledge. https://doi.org/10.4324/97814106145
- Boone, W. J., & Noltemeyer, A. (2017). Rasch analysis: A primer for school psychology researchers and practitioners. *Cogent Education*, *4*(1). https://doi.org/10.1080/2331186X.20 17.1416898
- Burfitt, J. (2017). Partial credit in multiplechoice items. 40 years on: We are still learning! Proceedings of the 40th Annual Conference of the Mathematics Education Research Group of Australasia, 117–124.
- Chandrasegaran, A. L., Treagust, D. F., & Mocerino, M. (2007). The development of a two-tier multiple-choice diagnostic instrument for evaluating secondary school students' ability to describe and explain chemical reactions using multiple levels of representation. *Chemistry Education Research and Practice*, 8(3), 293–307. https://doi.org/10.1039/B7RP90006F
- Cross, K. P., & Angelo, T. A. (1993). Classroom assessment techniques: A handbook for faculty. *The National Center for Research to Improve Post-*



- secondary Teaching and Learning. http://www.scopus.com/inward/record.url?eid=2-s2.0-84873961428&partnerID=tZOtx3y1
- Derya Kaltakci. (2012). Development and Application of a Four-Tier Test to Assess Pre-Service Physics Teachers Misconceptionts About Geometrical Optics. In *Middle East Technical University* (Nomor September). Middle East Technical University.
- Dewi, S. Z., & Ibrahim, T. (2019).
  Pentingnya Pemahaman Konsep
  Untuk Mengatasi Miskonsepsi Dalam
  Materi Belajar IPA di Sekolah Dasar.

  Jurnal Pendidikan UNIGA, 13(1),
  130–136.
  http://dx.doi.org/10.52434/jpu.v17i1.
  2 553
- Engelhard, G., & Wind, S. (2017). Invariant measurement with raters and rating scales: Rasch models for ratermediated assessments. In *Invariant Measurement with Raters and Rating Scales: Rasch Models for Rater-Mediated Assessments*. https://doi.org/10.4324/97813157668
- Holbeck, R., Bergquist, E., & Lees, S. (2014). Classroom Assessment Techniques: Checking for Student Understanding in an Introductory University Success Course. *Journal of Instructional Research*, 3, 38–42. http://files.eric.ed.gov/fulltext/EJ1127 694.pdf
- Jannah, R., & Rahmi, I. (2020).

  Pengembangan E- Diagnostic Four
  Tier Test Untuk Mengidentifikasi
  Miskonsepsi Peserta Didik. *Natural Science*, 6(2), 151–160.

  https://ejournal.uinib.ac.id/jurnal/inde
  x.php/naturalscience/article/view/172
  1
- Kiray, S. A., & Simsek, S. (2021).

  Determination and Evaluation of the Science Teacher Candidates' Misconceptions About Density by Using Four-Tier Diagnostic Test.

- International Journal of Science and Mathematics Education, 19(5), 935–955. https://doi.org/10.1007/s10763-020-10087-5
- Leonard, D. (2024). 28 Ways to Quickly Check for Understanding From sketching comics to drafting tweets, these fun—and fast—ways to check for understanding are creative and flexible. edutopia. https://www.edutopia.org/article/quic k-ways-to-check-for-understanding/
- Liliawati, W., Efendi, R., Purwana, U., & Muslim. (2022). Meningkatkan Konsepsi Asesmen Guru Fisika SMA Melalui Program Penguatan Kompetensi. *Online Submission*, 7, 69–74. http://electronicportfolios.com/portfolios/njedgenet.pdf
- Mardapi, D. (2020). *Teknik Penyusunan Instrumen Tes dan Non Tes*. Parama.
- Resbiantoro, G., Setiani, R., & Dwikoranto. (2022). A Review of Misconception in Physics: The Diagnosis, Causes, and Remediation. *Journal of Turkish Science Education*, 19(2), 403–427. https://doi.org/10.36681/tused.2022.1
- Retnawati, H. (2020). Validitas Reliabilitas & Karakteristik Butir. Parama.
- Sadler, D. R. (1998). Formative assessment: Revisiting the territory. *International Journal of Phytoremediation*, 21(1), 77–84. https://doi.org/10.1080/09695959800 50104
- Saputri, L., Maison, M., & Kurniawan, W. (2021). Pengembangan Four-Tier Diagnostic Test Berbasis Website untuk Mengidentifikasi Miskonsepsi pada Materi Suhu dan Kalor. *Jurnal Ilmiah Teknologi Informasi Asia*, 15(1), 61. https://doi.org/10.32815/jitika.v15i1.5
- Schuwirth, L. W. T., & Van Der Vleuten, C. P. M. (2011). Programmatic



- assessment: From assessment of learning to assessment for learning. *Medical Teacher*, *33*(6), 478–485. https://doi.org/10.3109/0142159X.20 11.565828
- Setiawati, F. A., Mardapi, D., & Azwar, S. (2013). Penskalaan Teori Klasik Instrumen Multiple Intelligences Tipe Thurstone Dan Likert. *Jurnal Penelitian dan Evaluasi Pendidikan*, 17(2), 259–274. https://doi.org/10.21831/pep.v17i2.16 99
- Suherly, T., Azizahwati, A., & Rahmad, M. (2023). Kemampuan Pemahaman Konsep Awal Siswa dalam Pembelajaran Fisika: Analisis Tingkat Pemahaman pada Materi Fluida Dinamis. *Jurnal Paedagogy*, 10(2), 494. https://doi.org/10.33394/jp.v10i2.723
- Sumaryanta. (2021). Teori Tes Klasik dan Teori Respon Butir: Konsep dan Contoh Penerapannya. In *Cetakan Pertama* (Vol. 15, Nomor 2).
- Sumintono, B., & Widhiarso, W. (2015).

  Aplikasi Pemodelan RASCH Pada
  Assessment Pendidikan. Trim
  Komunikata.
- Wiggins, G., & McTighe, J. (2005). *Understanding by Design* (D. Russel (ed.)). Julie Houtz.
- Wulandari, K., Khoiroh, M., & Prihatiningtyas, S. (2023). Pengembangan Instrumen Penilaian Formatif Materi Usaha Dan Energi Pada Mata Pelajaran Fisika SMA/MA. *Diffraction*, 5(1), 1–7. https://doi.org/10.37058/diffraction.v 5i1.6216