
Volume 10 No. 1 June 2024  Jurnal Pendidikan Fisika dan Teknologi (JPFT) 

   

192 

Forward Modeling of Gravity Anomalies for Identification 

of Burried Cylindrical Body Using Radial Derivative
 
Muhammad Zuhdi, Syahrial Ayub &Syamsuddin2 
1Physics Education Study Program, University of Mataram, Indonesia 
2Physics Study Program, University of Mataram, Indonesia 

*Corresponding Author: mzuhdi@unram.ac.id 

 
Received: 28th May 2024; Accepted: 25th June 2024; Published: 29th June 2024 

DOI: https://dx.doi.org/10.29303/jpft.v10i1.7077 

 
Abstract - Radial Derivative Forward Modeling of Gravity Anomalies for Identification of Cylindrical 

Geological Features. The gravity method is a geophysical method with exploration costs that are quite 

cheap compared to other geophysical methods. This method is based on the density contrast of the target 

body with the surrounding. The cylindrical body is one of the targets among various other geological 

features. This research was conducted to test the ability of radial derivatives of gravity anomalies for 

targets in the form of cylindrical body. Radial derivatives consist of a first derivative and a second 

derivative. Forward modeling of cylindrical geological features is carried out analytically and with 

finite elements. Both calculations were carried out with a computer program based on Matlab. The 

results show that there is no difference in results either analytically or finite element wise. This method 

has been proven to be able to provide clear boundary positions on cylindrical geological features. 
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INTRODUCTION 

The gravity method is a reliable 

exploration method and is very cheap 

compared to the seismic method. Gravity 

data is also used as a binding data from 

seismic methods. Gravitational methods are 

also used in mineral exploration to clarify 

information that has been obtained from 

electromagnetic methods. Gravity methods 

are also sometimes used for engineering and 

archaeological purposes (Telford et al., 

1990). The gravity method is a geophysical 

method that was first used for petroleum 

exploration (Nabighian et al, 2005). Gravity 

interpretation is an attempt to obtain mass 

distribution from gravity data on the surface. 

The interpretation of gravity is actually an 

inversion process from field theory, because 

the known value is the potential while the 

source is something that will be sought 

(Agung and Barat 1965). 

The 4D microgravity method or also 

known as time lapse microgravity is a 

development of the gravity method with the 

fourth dimension, namely time. This method 

is also characterized by repeated daily, 

weekly, monthly or yearly measurements 

using very high accuracy gravity 

measurements supported by high accuracy 

position and altitude measurements. The 

advantage of this method is that its operation 

is relatively simple and environmentally 

friendly (Reynold, 1997). 

The 4D gravity method has been 

widely used for identifying and monitoring 

subsurface changes. Eiken et al., used inter-

regional microgravity to monitor gas 

production in underwater reservoirs with a 

gravimeter sensitivity of up to 4 micro Gal. 

The level of confidence in the measurement 

results is 80% (Eiken, et al. 2004). Gettings 

et al. (2002), measured 4D microgravity 

values around geothermal geyser sources to 

detect subsidence due to mass changes 

during the production period with an 

anomaly rate of 2 ± 2 microGal and 4D of 10 

± 8 microGal (Gettings et al., 2002) Akasaka 

and Nakanishi (2000) separating geothermal 

source gravity anomalies from the influence 

of groundwater changes by correlating 
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drilling data and rainfall data (a=Akasaka 

and Nakanishi Rahman et al. (2007) 

succeeded in monitoring fluid injection in 

reservoirs in South Sumatra using the 4D 

gravity method (Rahman et al, 2007). Davis 

et al. (2008), measured 4D gravity anomalies 

to monitor water injection rates in the 

artificial aquifer storage and recovery (ASR) 

aquifer in Leyden Colorado. 2008). Sarkowi 

(2008) examined the relationship between 

changes in ground water and changes in 

vertical gravity gradient values in the city of 

Semarang and its surroundings. Zuhdi and 

Sismanto (2013) have created a horizontal 

model of geological features and their 

derivative treatment. Ricardi et al, (2022) 

created a tidal gravity model for the first 

time. Sprlak et al. (2018) created a density 

distribution map on the moon using gravity 

data. Tanzer et al., created a model of the 

earth's crust using the gravity method with 

harmonic analysis. Kumar et al, (2023) 

utilized the gravity method with a 

superconductor gravimeter to examine 

aquifer boundaries. Kuhn and Hirt (2016) 

use the second derivative of gravity data to 

find topography. 

In this research, the radial derivative 

gravity method will be used to detect 

geological features with a cylindrical shape. 

Cylindrical geological features are often 

found in various places around the world. 

These geological features include magmatic 

intrusions on volcanoes, volcanic plateaus or 

what are called plateaus, melted magma on 

molten volcanoes and intrusions of various 

plutonic rocks. Forward modeling is carried 

out in two ways, namely analytical and finite 

element modeling using a Matlab-based 

program whose algorithm was designed by 

the author himself. 

 

RESEARCH METHODS 

Radial Derivative is the derivative of 

the gravitational anomaly value against the 

horizontal distance in the radial direction 

from a certain point which is considered the 

center of the anomaly. The horizontal 

derivative of a gravity anomaly is the 

derivative of the gravity value in a certain 

straight line direction. If the straight line cuts 

perpendicularly to a density contrast 

boundary, the derivative value will be large. 

In many cases it is necessary to obtain a 

derivative that is always perpendicular or as 

close to perpendicular as possible to the 

anomalous density contrast. For this 

purpose, Radial Derivatives were created. 

The center point of the Radial Derivative is 

selected based on certain considerations so 

that this point is considered or considered as 

the center of the anomaly to be identified.  

The value of the gravity anomaly 

Δgz(x,y,z) caused by the density anomaly 

Δρ(α,β,γ) is written as: 

 (1) 

can be converted into cylindrical 

coordinates, so that Δgz(x,y,z) becomes 

Δgz(R,z,λ) and Δρ(R',z',λ'), with the 

relationship: x = R cos λ, y = R sin λ and z = 

z, while α = R cos λ', β = R sin λ' and γ = z', 

with the mass element Δρ dR dz Rdλ so that 

the gravity value towards the z axis can be 

written as: 

 

 (2) 

The First Derivative Radial (FDR) of the gravity anomaly at vertical cylindrical 

𝜟𝒈𝒛(𝑹, 𝒛,𝝀)

= −𝑮   
𝜟𝝆  𝑹′, 𝒛′,𝝀′  𝒛 − 𝒛′ 

  𝑹𝒄𝒐𝒔𝝀 − 𝑹𝒄𝒐𝒔𝝀′ 𝟐 +  𝑹𝒔𝒊𝒏𝝀 − 𝑹𝒔𝒊𝒏𝝀′ 𝟐 +  𝒛 − 𝜸 𝟐 𝟑/𝟐
 𝑹𝒅𝑹 𝒅𝒛′ 𝒅𝝀′

∞

−∞

∞

−∞

∞

𝟎

 

𝜟𝒈𝒛(𝒙,𝒚, 𝒛) = −𝑮   
𝜟𝝆  𝜶,𝜷,𝜸  𝒛 − 𝜸 

  𝒙 − 𝜶 𝟐 +  𝒚 − 𝜷 𝟐 +  𝒛 − 𝜸 𝟐 𝟑/𝟐
 𝒅𝜶 𝒅𝜷 𝒅𝜸

∞

−∞

∞

−∞

∞

𝟎
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coordinates Δgz(R,z,λ) can simply be 

written as: 
𝐹𝑅𝐷 =

𝜕∆𝑔𝑧 𝑅, 𝑧, 𝜆 

𝜕𝑅
 

 

 (3) 

 

Meanwhile, the second Radial Derivative 

(SRD) can simply be written as: 

𝑆𝑅𝐷 =
𝜕2∆𝑔𝑧 𝑅, 𝑧, 𝜆 

𝜕𝑅2
 

 
                                                                  (4) 

Equation (4) is an FRD and SRD 

equation that can be described analytically if 

the model geometry of the source is known 

and has a simple form. This analytical 

formulation is useful for knowing the 

graphical behavior of the gravity anomaly. 

This analytical equation is also needed in 

creating a Radial Inversion model from the 

model. 

Radial Derivatives can be viewed as 

directional derivatives with a radial direction 

that is always away from a certain central 

point as the center of the Radial Derivative. 

If the gravitational field g is considered as a 

scalar field on a flat plane (x,y), then the 

largest rate of change in the value of g(x,y) 

on that plane is the gradient of the g field 

which is written as: 

 

𝛻 𝑔 𝑥,𝑦  = (
𝜕𝑔 𝑥,𝑦 

𝜕𝑥
𝑖̂ +

𝜕𝑔 𝑥,𝑦 

𝜕𝑦
𝑗̂)                (5) 

 

If the radial direction in the Radial 

Derivative is vector v which is the unit 

direction vector, then the Radial Derivative 

of the field g(x,y) can be written as: 

 

𝐷𝑅𝑔 𝑥, 𝑦 = 𝛻 𝑔 𝑥,𝑦 ∙ 𝑣                           (6) 

 

At the coordinate position (a, b), the field 

gradient g(x,y) becomes ∇ g(a,b) and the 

direction of the Radial Derivative becomes: 

 

𝐷𝑅𝑔 𝑎, 𝑏 = 𝛻 𝑔 𝑎,𝑏 ∙ 𝑣                               (7) 

The direction of v is always away from the 

center of the Radial Derivative so that at 

position (a, b), the unit vector in the direction 

of v can be written as: 

𝑣 =
𝑎�̂�+𝑏�̂�

|√𝑎2+𝑏2|
                                  

Thus the Radial Derivative of the g field at 

point (a, b) can be written as: 

 

𝐷𝑅𝑔 𝑎, 𝑏 = 𝛻 𝑔 𝑎,𝑏 ∙
𝑎�̂�+𝑏�̂�

|√𝑎2+𝑏2|
               (8) 

 

Figure 1 shows the field gradient g 

which is a directional derivative towards the 

unit vector position v. The value of the 

change in the gravitational field in the Radial 

Derivative is always smaller than the g field 

gradient in the (x, y) plane and can have a 

maximum value equal to the g field gradient. 

 
Figure 1. Field gradient g and directional 

derivative towards v 

 

Radial derivatives can be approached 

discretely by subtracting each measurement 

point in a certain direction. The derivative 

towards the x axis is obtained by subtracting 

the gravity value from the measurement at 

𝐹𝑅𝐷 =
𝜕

𝜕𝑅
[   

𝛥𝜌  𝑅′ , 𝑧 ′ , 𝜆′  𝑧 − 𝑧 ′ 

  𝑥 − 𝛼 2 +  𝑦 − 𝛽 2 +  𝑧 − 𝛾 2 
3
2

 𝑅𝑑𝑅 𝑑𝑧 𝑑𝜆

∞

−∞

∞

−∞

∞

0

] 

𝑆𝑅𝐷 =
𝜕2

𝜕𝑅2 [   
𝛥𝜌  𝑅′ , 𝑧 ′ , 𝜆′  𝑧 − 𝑧 ′ 

  𝑥 − 𝛼 2 +  𝑦 − 𝛽 2 +  𝑧 − 𝛾 2 
3
2

 𝑅𝑑𝑅 𝑑𝑧 𝑑𝜆

∞

−∞

∞

−∞

∞

0

] 
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point xn+1, namely gn+1, from the gravity 

value at point xn, namely gn, then dividing by 

the distance xn+1 to xn. To get the derivative 

value towards the y axis, it is obtained by 

subtracting the gravity value from the 

measurement at point yn+1 from the gravity 

value at point yn and then dividing it in the 

same way by the distance yn+1 to yn. The 

value of the derivative approach in the 

direction of the y-axis is (gn+1-gn)/(yn+1-yn) 

shown by the red slope in Figure 3. (a). In 

the same way, the value of the derivative 

approach towards the y-axis is (gm+1-

gm)/(ym+1-ym). 

 

 
Figure 2. (a) Horizontal derivative approach (b) 

Dotted diagram showing positions for Radial 

Derivative calculations 

 

In many cases, a derivative is needed 

not only in the direction of the x or y axis but 

in a certain direction, which is often called a 

directional derivative. 

In Figure 2, Δx is the approximation 

of the horizontal derivative value towards 

the x axis at position n+1/2,m, so that Δx in 

this equation can be written as: 

 
𝛥𝑔𝑥𝑛+1/2,𝑚

𝛥𝑥
=

𝑔𝑛+1,𝑚−𝑔𝑛,𝑚

𝑥𝑛+1,𝑚−𝑥𝑛,𝑚
                            (9) 

 

in the same way, then dy which is the 

horizontal derivative towards the y axis at 

position n+1/2, m can be written as: 

 
𝛥𝑔𝑦𝑛,𝑚+1/2

𝛥𝑦
=

𝑔𝑛,𝑚+1−𝑔𝑛,𝑚

𝑦𝑛,𝑚+1−𝑦𝑛,𝑚
                           (10) 

 

By looking at Figure 2. (b), the values 

of cos θ and sin θ have values whose 

magnitude can be expressed as: 

 

𝑐𝑜𝑠 𝜃 =  
𝑥𝑛+1/2,1−𝑥1,1

{(𝑥𝑛+1/2,1−𝑥1,1)
2
+(𝑦1,𝑚+1/2−𝑦1,1)

2
}
1/2  

 

𝑠𝑖𝑛 𝜃 =  
𝑦1,𝑚+1/2 − 𝑥1,1

{(𝑥𝑛+1/2,1 − 𝑥1,1)
2
+ (𝑦1,𝑚+1/2 − 𝑦1,1)

2
}
1/2

 

 

 (11) 

 

The Radial Derivative Value 

Δg/ΔR=(Δgx/Δx)sin θ+(Δgy/Δy)sin θ is 

then obtained by substituting it with 

equations (9), (10), and (11) which can be 

written as: 

 

                               

 

 (12)

The Radial Derivative Program can be 

seen in Appendix 1. This program can be 

used for data with a regular grid called 

matrix X, with an odd number of columns 

and rows. 

 

𝛥𝑔

𝛥𝑅
=

𝑔𝑛+1,𝑚 − 𝑔𝑛 ,𝑚

𝑥𝑛+1,𝑚 − 𝑥𝑛 ,𝑚

𝑥𝑛+1/2,1 − 𝑥1,1

{(𝑥𝑛+1/2,1 − 𝑥1,1)
2

+ (𝑦1,𝑚+1/2 − 𝑦1,1)
2
}

1/2

+
𝑔𝑛 ,𝑚+1 − 𝑔𝑛 ,𝑚

𝑦𝑛 ,𝑚+1 − 𝑦𝑛 ,𝑚

𝑦1,𝑚+1/2 − 𝑥1,1

{(𝑥𝑛+1/2,1 − 𝑥1,1)
2

+ (𝑦1,𝑚+1/2 − 𝑦1,1)
2
}

1/2 
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RESULTS AND DISCUSSION 

Results 

Cylindrical geological features are 

often found in various places around the 

world. These geological features include 

magmatic intrusions on volcanoes, volcanic 

plateaus or what are called plateaus, melted 

magma on molten volcanoes and intrusions 

of various plutonic rocks. The main 

requirement for detecting cylindrical 

geological features is the density contrast of 

the cylindrical rock with respect to the 

surrounding rocks. 

The gravity anomaly at the 

measurement point on the surface as shown 

in Figure 3 was formulated by Telford et al. 

(1990) with equation (13). This equation 

applies to cylinders of infinite length, or 

whose length is very much greater than the 

depth of the top of the cylinder. In the case 

of a cylindrical geological feature, it can be 

calculated by subtracting two infinitely long 

cylinders of different depths. 

Figure 3. shows the thin cylinder 

approach with a reduction of 2 infinite long 

cylinders. From this image it can be seen that 

the thickness of the geological feature is z2 - 

z1 with the peak depth of the geological 

feature being z1. 

For a cylinder whose length is much 

greater than the depth at its top, if it satisfies 

the Laplace equation, it can be expressed r > 

z > R in the form of a Legendre polynomial 

with the formulation: 

 

𝑔 𝑟, 𝜃 = 𝑘 ∑ 𝑏𝑛𝑟
− 𝑛+1 𝑃𝑛

∞
𝑛=0  cos 𝜃        (13) 

 

with the value k = 12.77.10-3 ρ, bn is the 

coefficient, Pn (cos θ) is the Legendre 

polynomial, r2 = x2 + z2, and θ = arc tan (x/z). 

On the cylinder axis r = z so that θ = 0, then 

the equation becomes 

 

𝑔 = 𝑘  
𝑏0𝑃0

𝑧
+ 

𝑏1𝑃1

𝑧2
+ 

𝑏2𝑃2

𝑧3
+ 

𝑏3𝑃3

𝑧4
+⋯     

 

𝑔 = 𝑘  
𝑏0

𝑧
+ 

𝑏1

𝑧2
+ 

𝑏2

𝑧3
+ 

𝑏3

𝑧4
+⋯            (14) 

with P0, P1, P2 and so on are Legendre 

polynomials with value 1. 

For values of L approaching infinity, 

we obtain the equation 

 

𝑔 = 12,77 × 10−3𝜌(√𝑥2 + 𝑧2 − 𝑧)    (15) 

 

The expansion of equation (15) in the form 

(R/z) is obtained 

 

𝑔 = 𝑘 
𝑅2

2𝑧
−

𝑅4

8𝑧3
+

𝑅6

16𝑧5
−

5𝑅8

128𝑧7
+⋯     (16) 

 

The value bn = 0 applies to odd n, while b0 = 

R2/2, b2 = - R4/8, b4 = R6/16, b6 = 5R8/128  

and so on. So g(r, θ) outside the cylinder axis 

becomes 

𝑔 𝑟, 𝜃 = 12,77 × 10−3 𝜌𝑅 {
1

2
(
𝑅

𝑟
) −

1

8
(
𝑅

𝑟
)
3

𝑃2 𝜇 +

1

16
(
𝑅

𝑟
)
6

𝑃4 𝜇 −  
5

128
(
𝑅

𝑟
)
7

𝑃6 𝜇 +⋯ }                (17) 

 

with the value µ = cos θ. 

 
Figure 3. Approach to a thin cylinder with a 

difference between 2 long cylinders and infinite 

downwards 

 

For a small cylinder or vertical rod 

with cross-sectional area A, depth z and 

length L, it can be formulated as  

 

𝑔 = 2.03 × 10−3𝐴𝜌 [
1

 𝑥2+𝑧2 0.5
−

1

  𝑧+𝐿 2+𝑥2 0.5
] (18) 

 

by substituting r = (x2+z2)1/2, we get 

                
                                                                (19) 

𝑔 𝑟, 𝜃 = 6.4 × 10−3𝜌𝑅2  
1

 𝑥2 + 𝑧2 0.5 −
𝑅2𝑃2 𝜇 

4 𝑥2 + 𝑧2 1.5 +
𝑅4𝑃4 𝜇 

16 𝑥2 + 𝑧2 2.5 −⋯  
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The equation has better accuracy than 

equation (18). This equation was chosen 

because it is simpler. 

For values z < R, another approach to 

equation (19) is not in the form R/z but in the 

form z/R, we get: 

 

𝑔 = 12.77 × 10−3𝜌𝑅2 (1 −
𝑧

𝑅
+

𝑧2

2𝑅2
−

𝑧4

8𝑅4
+

𝑧6

16𝑅6
)          (20) 

 

for z < r < R, the off-axis value equation can 

be expressed in the form 
 

𝑔 𝑟, 𝜃 = 𝑘 ∑ 𝑎𝑚𝑟
𝑚𝑃𝑚

∞

𝑚=0

 𝜇  

= 𝑘  𝑎0 + 𝑎1𝑟 𝑃1 𝜇 + 𝑎2𝑟
2𝑃2 𝜇 +    𝑎3𝑟

3𝑃3 𝜇 + ⋯       (21) 

 

So the coefficient on the axis ( r = z, θ = 0 ) 

is obtained 

 

a0 = R, a1 = -1, a2 = 1/2R, a3 = a5 = a2n+1 = 0, a4 

=1/8 R3, … 

 

So, for outside the z axis, the equation for z 

≤ r ≤ R, becomes 

 

 (22) 

 

In Figure 3. it appears that the radial 

direction is the x direction.  

 

 
Figure 4. Gravity anomalies of cylindrical 

geological features and Radial Derivatives for 

various depths calculated analytically 

 

By replacing r in each term of equation (22) 

with x2 + z2 and deriving each term we get: 

 
𝜕𝑔

𝜕𝑥
 𝑥, 𝜃 = 2𝜋𝐺𝜌𝑅 {1 − (

1

𝑅√𝑥2+𝑧2
−

𝑥2

𝑅 𝑥2+𝑧2 3/2
)𝑃1 𝜇 +

 
1

2
(
2𝑥

𝑅2
)𝑃2 𝜇 

1

2
(
𝑥2+𝑧2

𝑅4
)𝑃4 𝜇 + ⋯ }                                             

(23) 

 

For R values between r and z, with r < R < z, 

we use a different series, namely with the 

equation: 

 

𝑔 𝑟, 𝜃 = 2𝜋𝐺𝜌𝑅 {
1

2
(
𝑅

𝑟
) +

1

8
(
𝑅

𝑟
)
3

𝑃2 𝜇 −

1

16
(
𝑅

4
)
5

𝑃4 𝜇 + ⋯ }         (24) 

 

As with replacing r in each term of 

equation (22), r in equation (24) is also 

replaced with x2 + z2 and the Radial 

Derivative is obtained by deriving each term 

so that we get: 

 

𝑔 𝑟, 𝜃 = 2𝜋𝐺𝜌𝑅 {
1

2
(

−𝑅𝑥

 𝑥2+𝑧2 3/2
) +

3

8
(

−𝑅3𝑥

 𝑥2+𝑧2 5/2
)𝑃2 𝜇 −

  
15

16
(

𝑅5𝑥

 𝑥2+𝑦2 3/2
)𝑃4 𝜇 +⋯ }                                             (25) 

 

Figure 4 shows the geological feature 

anomalies with various depths as well as the 

Radial Derivatives for various 

corresponding depths calculated 

analytically. 

 

Discussion 

First Radial Derivative (FRD) is the 

first horizontal derivative in a radial 

direction concentric to a certain point which 

is considered to represent the center of the 

𝑔 𝑟,𝜃 = 2𝜋𝐺𝜌𝑅 {1 − (
𝑟

𝑅
)𝑃1 𝜇 +

1

2
(
𝑟

𝑅
)

2

𝑃2 𝜇 −
1

8
(
𝑟

𝑅
)

4

𝑃4 𝜇 + ⋯} 
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anomaly. Visually, FRD can show the 

density contrast limits quite well. 

Performing FRD on gravity anomalies can 

provide a lot of additional information about 

the density contrast limits in the area. 

Second Radial Derivative (SRD) is a 

second horizontal derivative in a radial 

direction concentric to a certain point which 

is considered to represent the center of the 

anomaly or center of mass being explored. 

Visually, FRD can show the density contrast 

boundaries very sharply. To increase the 

sharpness of the anomaly, cutting can be 

done on the SRD value. With cutting 

treatment, the SRD of the anomaly will 

visually show very sharp boundaries of the 

density contrast. Performing FRD on gravity 

anomalies can provide a lot of additional 

information about density contrast limits 

through visual display. This SRD method 

will enrich the instrument for interpreting 

gravity anomalies, especially vertical 

density contrast anomalies. 

 

CONCLUSION 

This modeling can be applied to 

geological features that have a cylindrical 

shape or that resemble a cylinder such as 

ellipses and cylinders with conical roofs. 

Finite difference modeling based on 

convolution should be carried out to 

continue research on this cylindrical 

geological feature. 
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