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Abstract: This research aims to develop a predictive model for tidal inundation at Tanjung Perak Port in Surabaya, a region
identified as critical and highly susceptible to such events. The foundational data incorporated comprises
hydrometeorological indicators, such as lunar cycles, tidal patterns, and precipitation levels, which were sourced from the
BMKG Tanjung Perak Maritime Meteorological Station. A dataset comprising 26,275 individual data points was compiled
and subsequently partitioned into training sets (80% of the data) and validation sets (20%) via randomization. This
apportionment is intended to support the robustness and applicability of the developed model. The initial data preparation
phase involved techniques such as data normalization, imputation of missing values, and the determination of variable
weights based on their respective degrees of impact. Subsequently, two distinct machine learning methodologies were
employed to construct the predictive framework: Gradient Boosting (specifically, XGBoost) and Logistic Regression. The
efficacy of the resultant models was rigorously assessed using various metrics, including accuracy, confusion matrix analysis,
ROC-AUC scores, and feature significance analysis. Analysis of the outcomes indicated that the Gradient Boosting model
achieved a superior accuracy of 99.96%, whereas Logistic Regression attained 99.85%. An examination of the features
revealed that lunar cycles and tidal conditions were the principal determinants of tidal inundation, with precipitation exerting
a comparatively minor effect. These observations substantiate the efficacy of integrating suitable data preparation techniques
with machine learning methodologies to achieve precise predictive outcomes. The principal contribution of this investigation
is the establishment of a computational framework to facilitate the development of an advanced warning system for tidal
flooding, thereby aiding hazard reduction and limiting adverse societal, financial, and operational consequences in littoral
regions.
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study was conducted at Tanjung Perak Port in Surabaya, one
of Indonesia's major ports, which plays a vital role in national
logistics distribution. The high density of industrial and
residential activities around the port increases the complexity
of the tidal flooding's impacts. This situation requires the
application of methods capable of predicting potential
flooding with high accuracy so that mitigation measures and
policies can be implemented in a timely and effective
manner. The primary drivers of tidal inundation events are
hydrometeorological conditions, including lunar cycles, tidal
elevations, and daily precipitation amounts. Variations in
lunar phases induce gravitational stresses that impact oceanic
water level fluctuations. Elevated rainfall contributes to
increased surface water accumulation, thereby elevating the
potential for flooding, particularly when synchronized with

Introduction

Coastal areas play a crucial role in supporting
economic activities, particularly in the maritime
transportation and interregional distribution sectors. Ports
are key hubs in the logistics network, both nationally and
internationally, so smooth port operations are crucial to the
success of trade and industrial activities [1]. However,
coastal areas face major challenges in the form of
hydrometeorological disasters, such as tidal flooding.
Coastal inundation, characterized by the encroachment of
ocean water onto terrestrial areas, is frequently initiated by
elevated tidal levels, which are influenced by lunar
gravitational forces. Such events are often intensified by
severe meteorological conditions, including substantial

precipitation. This occurrence has a detrimental effect on
various aspects of port operations, notably cargo
management. Furthermore, it can lead to the deterioration of
civil engineering structures, impede the societal and
commercial endeavors of adjacent populations, and engender
considerable economic repercussions. Consequently,
establishing an accurate system for forecasting tidal flood
occurrences is crucial for reducing risk and facilitating
adaptation strategies in vulnerable coastal regions. This

How to Cite:

peak tidal periods. The intricate interdependencies among
these elements produce phenomena that conventional,
typically linear or descriptive, forecasting approaches
struggle to accurately represent.

Coastal inundation is an intermittent hazard affecting
shorelines, occurring when tidal movements combine with
various meteorological conditions, causing water to
submerge low-elevation zones. Such events present
considerable dangers to metropolitan infrastructure, transit
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systems, and the economic stability of populations residing
near the coast. Contemporary investigations have analyzed
the synergistic impacts of tides and precipitation on
inundation occurrences by employing a unified
hydrodynamic methodology and machine learning
techniques [2]. This research emphasises the significance of
considering nonlinear dynamics and complex relationships
among variables in understanding the characteristics of tidal
flooding. Nevertheless, a predominant number of current
methodologies continue to rely on descriptive examinations
or basic statistical techniques, which frequently prove
insufficient for adequately depicting the multiple factors that
influence tidal inundation.

To overcome these constraints, sophisticated
computational techniques have been investigated. Machine
learning methodologies, notably, provide a means to
represent complex, non-linear associations and interplays
with greater proficiency than traditional strategies. The
Gradient Boosting approach falls into this category. The
Gradient Boosting algorithm, in particular, has demonstrated
substantial predictive power. This approach constructs
models sequentially by reducing the prediction discrepancies
from earlier phases, which consequently facilitates the
detection of intricate patterns that are frequently missed by
less sophisticated models. [3]. This research employs
logistic regression as a comparative methodology alongside
Gradient Boosting. Logistic Regression is a well-established
statistical technique applied to binary classification tasks. It
provides a straightforward and comprehensible approach to
analyzing the impact of independent variables on the
likelihood of a specific outcome, which in this context
pertains to tidal inundation. While Logistic Regression
exhibits constraints in modelling nonlinear associations, its
strengths include a stable predictive framework and clear
interpretability. These attributes render it an appropriate
baseline for assessing more sophisticated algorithms.
Through the comparison of Gradient Boosting and Logistic
Regression performance, this investigation facilitates a
thorough evaluation of machine learning techniques for
forecasting tidal flooding events at Tanjung Perak Port. The
expected contribution is the development of a more reliable
early warning system, which can assist policymakers in
formulating effective strategies to mitigate
hydrometeorological disasters in coastal areas that are
increasingly vulnerable to climate and environmental
change.

This is reinforced by high-resolution numerical
methodologies that consider physical processes in estuarine
hydrodynamics, serving as a crucial foundation for obtaining
reliable tidal flood predictions and accurately estimating
flood extent within estuarine and bay systems [4]. Predictive
models based on machine learning, such as Gradient
Boosting and Logistic Regression, can utilize these
parameters (moon phase, tidal height, rainfall) to more
accurately estimate the likelihood of tidal flooding and even
estimate flood levels. The integration of data modelling and
physical principles is a crucial foundation for developing
precise and adaptive early warning systems for
hydrometeorological disasters that account for local
dynamics [5].

Based on the research results, the Gradient Boosting
model achieved the highest accuracy of 99.96%, while
Logistic Regression achieved 99.85%, indicating that both
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models have excellent predictive capabilities, with XGBoost
slightly superior.

These results are consistent with the findings of
Zhang et al [6], which reported that XGBoost achieved an
(Area Under Curve) AUC of 0.94 and an accuracy of 92%,
higher than Logistic Regression with an AUC of 0.85.
Similar findings were reported by Pratama et al. [7], who
found that LightGBM and XGBoost achieved 10-15%
higher accuracy than Logistic Regression for flood
prediction in Jakarta.

Previous research on the capability of Logistic
Regression to identify flood-susceptible areas in a small
watershed shows that it is effective for identifying flood-
prone areas when the predictor variables are linear, but less
optimal for complex spatial data [8]. Conversely, ensemble
models such as Gradient Boosting are better able to capture
the complex spatial and temporal dynamics in hydrological
and estuarine systems. Thus, integrating hydrodynamic
physical modelling with a Gradient Boosting-based machine
learning approach is a crucial step toward developing a
precise, adaptive, and context-aware early warning system
for the local dynamics of Tanjung Perak Port.

Although several studies in Indonesia and Southeast
Asia have examined tidal flooding wusing statistical
approaches, remote sensing, or deep learning, such as Water
Level Time Series Forecasting Using TCN in Surabaya [9],
deep Learning for Tidal Flood Prediction in West
Pandeglang, Banten [10], and Tidal Flood Vulnerability
Assessment in Central Java [11], most of them focus on the
influence of a single variable, regional vulnerability, or the
use of a single algorithm, and rarely evaluate the importance
of variable features in depth. In contrast, this study presents
a comparative machine learning framework that compares
Gradient Boosting and Logistic Regression, employing
comprehensive preprocessing and feature importance
analysis to determine the relative contributions of the moon
phase, tides, and rainfall to the potential for tidal flooding at
Tanjung Perak Port.

Research Methods

This study began with the collection of
hydrometeorological data from the Meteorology,
Climatology, and Geophysics Agency (BMKG), specifically
the Tanjung Perak Surabaya Maritime Meteorological
Station. Three main variables were used: moon phase, tidal
range, and daily rainfall. The initial data were obtained in the
form of graphs or PDF files from routine observations, which
were then manually converted into Excel format for
quantitative processing.
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After the data collection stage was completed, a pre-
processing process was carried out consisting of three main
steps, namely converting the data from image format to
Excel format, normalizing all variables to a scale of 0-—1
(where a value of 1 indicates the condition with the highest
potential for tidal flooding), and weighting the variables
according to their level of contribution to tidal flooding
events, namely the moon phase at 0.55, tidal range 0.35, and
rainfall 0.10. The objective of the normalization and
weighting stages is to prevent any individual variable from
disproportionately influencing the model's learning curve
and to ensure that each parameter's impact is commensurate
with its importance. Contemporary research has frequently
used normalization methods, such as min—max scaling and
Z-score standardization, to reconcile variables measured in
disparate units. Concurrently, weighting approaches such as
entropy, AHP, or PCA are applied to assign appropriate
weights to each factor that affects flood vulnerability [12].

After normalization and weighting, the collected
indicators are integrated to form a composite flood potential
index. This consolidation effectively distils complex,
multidimensional environmental information into a format
that is readily understandable on a numerical scale.
Subsequently, this composite index is segmented into
distinct classifications, each corresponding to a specific
degree of flood risk. For instance, a value of 0 might denote
the absence of tidal flooding, while a value of 1 could signify
severe tidal flooding. This classification enables more
precise spatial identification of areas susceptible to flooding.
Contemporary studies underscore that the method selected
for normalization, weighting, and classification has a
substantial impact on the ultimate cartographic
representation and the ease with which flood potential
outcomes can be understood. This consequently emphasizes
the critical need for both methodological uniformity and
thorough sensitivity analysis[13].

Next, the dataset was divided into two parts: 80% for
the training set (21,020 data points) and 20% for the test set
(5,255 data points). This division aimed to evaluate the
model's ability to generalize previously unseen data. In this
study, two algorithms—Gradient Boosting and Logistic
Regression—were used to model the potential for tidal
flooding. The Gradient Boosting technique was selected for
its ability to construct models sequentially. This approach
refines predictions iteratively by addressing prior errors and
is adept at discerning intricate, non-linear relationships
within data. Logistic Regression is employed as a
benchmark, providing a more straightforward and easily
understood model to explain the relationship between
predictor variables and the likelihood of tidal flooding.
Model efficacy is assessed through accuracy metrics,
confusion matrices, and an examination of feature
significance to identify the variables that exert the greatest
influence on classification outcomes. Recent literature shows
that combining ensemble tree methods with general linear
models outperforms simpler approaches for flood and hazard
prediction, both in terms of precision and interpretability
[14]. With this approach, the research not only produces a
reliable prediction model but also provides a comprehensive
assessment of the model's stability as a supporting
component of an early warning system in coastal areas.
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Hyperparameters of Gradient Boosting and Logistic
Regression

To obtain the optimal model configuration, several
combinations of hyperparameters were tested, such as
max_depth, min_samples_split, and n_estimators. The goal
was to find the configuration that produced the highest
accuracy in the classification process.

Table 1. Hyperparameters for gradient boosting

Max Min samples n_estimators Accuracy
depth split

3 2 200 0.99961941
10 2 50 0.99961941
3 10 100 0.998287345
3 2 50  0.994671741
3 5 50  0.994671741

Various combinations were systematically tested, and
the test results showed that the optimal combination was
achieved with the settings max depth = 3,
min_samples_split = 2, and n_estimators = 200, yielding a
model with an accuracy of 99.96%. This arrangement
maintains the model's straightforwardness and prevents
excessive fitting to the training data, while simultaneously
enabling progressive error refinement via the boosting
process.

The visualization presented delineates the outcomes
of optimizing the hyperparameters for the Logistic
Regression algorithm. This assessment involved a
methodical exploration of various settings for the
regularisation strength (C) and the optimisation algorithm
employed. The C parameter controls the strength of
regularization imposed on the model. An elevated C value
allows the model to capture intricate data patterns more
effectively, while a reduced C value enforces stronger
regularization, resulting in a simpler model, though this
simplification may compromise predictive accuracy. The
regularization techniques, identified as 11 and 12, were
implemented to control the regularization process, with C
dictating the magnitude of this control (a larger C signifies
less regularization). In parallel, optimization routines such as
liblinear and lbfgs were utilized for model fitting. Academic
discourse has addressed comparable methodological
considerations concerning the effect of regularization on
logistic regression within high-dimensional environments
[15]. This optimization process aims to determine the
configuration that yields superior classification precision,
while concurrently balancing model complexity and
predictive performance across independent datasets.

While Gradient Boosting is recognized for its ability
to achieve high accuracy, this modelling approach has
certain limitations. A notable disadvantage is its
susceptibility to overfitting, especially when used with small
or imbalanced datasets. Furthermore, Gradient Boosting
requires meticulous tuning of its hyperparameters to achieve
peak performance; consequently, selecting unsuitable
parameter values can compromise the model's predictive
generalization. From a computational standpoint, this
methodology is comparatively more demanding than simpler
algorithms, resulting in longer model training times and
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substantial memory requirements. This research underscores
that the problem of overfitting within Gradient Boosting can
be addressed through the implementation of cross-validation
and thorough data preprocessing methods, thereby
improving the model's capacity to generalize to unseen data
[16].

Table 2 Logistic Regression Hyperparameters

Penalty C Solver Accuracy

11 2 liblinear 0.99847764
11 1 liblinear 0.99809705
11 0,5 liblinear 0.996574691
12 2 Ibfgs 0.971075167
12 1 Ibfgs 0.970313987
12 0,5 Ibfgs 0.967269267

Analysis of the data presented in the table indicates
that Model 7, characterized by an L1 configuration penalty,
a C value of 2, and the liblinear solver, yielded the optimal
outcome. This configuration achieved the highest accuracy
rate at 99.85%, as highlighted in yellow. Conversely, Model
2, employing an L2 penalty, a C value of 0.5, and the lbfgs
solver, yielded the lowest accuracy of 96.73%. This disparity
underscores the substantial influence that the choice of
regularization type, regularization strength, and optimization
algorithm can exert on a model's overall effectiveness.
Notwithstanding ~ these  variations, all  evaluated
configurations demonstrated a commendable accuracy
exceeding 96%, implying that the dataset possesses
sufficiently discernible patterns to be effectively delineated
using Logistic Regression.

Logistic Regression has several important limitations,
despite its frequent use, due to its simplicity and ease of
interpretation. One limitation is that when the outcome
(dependent variable) is a relatively common event (>10%),
the odds ratio estimate from Logistic Regression can be
biased when the underlying assumption is prevalence or risk
(prevalence ratio/relative risk) [17]. In addition, Logistic
Regression tends not to handle highly complex or non-linear
data structures well unless feature transformations or
variable interactions are explicitly applied. This model can
also be disrupted by multicollinearity among predictor
variables, and its performance is suboptimal when the data
are incomplete or contain many missing values [18].

Confusion Matrix of Gradient Boosting and Logistic
Regression

Evaluating model performance using a matrix
provides a clear picture of the classification accuracy
achieved by each method. Both the Gradient Boosting
technique and Logistic Regression exhibit strong predictive
performance, with minimal misclassifications observed in
the evaluation dataset. Gradient Boosting achieves superior
accuracy, whereas Logistic Regression, despite a marginal
decrease in accuracy, yields dependable outcomes and
provides enhanced clarity regarding the influence of
predictor variables.
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Figure 2. Confusion matrix of (a) Gradient Boosting, (b)
Logistic Regression.

The Gradient Boosting model performed excellently
when evaluated using a confusion matrix. Analysis of the test
results indicates that the model accurately classified 1,401
instances within the "not prone to tidal flooding" group, with
a single misidentified case. Conversely, within the "potential
tidal flooding" classification, all 3,853 data entries were
accurately assessed, resulting in no false negatives. These
findings demonstrate Gradient Boosting's proficiency in
discerning data trends with high accuracy, encompassing
both the identification of secure environments and the
recognition of hazardous situations. With a total accuracy of
99.98%, the model has demonstrated its high reliability for
integration into early warning frameworks. The low
incidence of predictive errors is a crucial benefit, serving to
prevent the dissemination of erroneous information, avert
public alarm, and ensure that intervention measures are
implemented only when demonstrably warranted.

Despite a marginally lower accuracy than Gradient
Boosting, the Logistic Regression model demonstrates
commendable efficacy. Across the entire test data set, this
model correctly predicted 1,399 data points in the “potential
tidal flooding” category. There were only three cases that
should have been classified in this category but were instead
predicted as “not at risk of tidal flooding,” resulting in false
negatives. Regarding the classification of areas not
susceptible to tidal flooding, Logistic Regression exhibited
complete accuracy, correctly identifying all 3,853 instances
without any erroneous predictions. The model's overall
performance registered an accuracy rate of 99.92%.

A significant advantage of Logistic Regression is its
ability to clearly illustrate how specific predictor variables
influence the probability of a particular event. This
characteristic facilitates the analysis and subsequent
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communication of results to relevant parties. Therefore,
despite Gradient Boosting's greater predictive power,
Logistic Regression remains a viable option, especially when
understanding the underlying relationships is of primary
importance. For instance, the study titled Gradient Boosting
achieves higher accuracy than Logistic Regression with large
datasets. Logistic Regression is more readily explainable to
individuals without technical expertise due to its directly
interpretable coefficients, as shown in the study of Seto et.al
[19].

A Comparative Examination of Feature Significance in
Gradient Boosting and Logistic Regression Models

The comparative evaluation of feature importance
across these two modelling approaches indicates that the
lunar phase consistently emerges as the predominant
determinant of tidal inundation likelihood. In the Gradient
Boosting model, the lunar phase contributes nearly 0.7,
whereas in Logistic Regression, it reaches around 30, which
is significantly greater than that of other variables. This
suggests that astronomical factors, specifically the position
and phase of the moon, are closely linked to the dynamics of
tidal movements, which are the primary drivers of tidal
flooding. Meanwhile, tidal parameters rank second in both
models, with significant importance levels of approximately
0.3 in Gradient Boosting and 20 in Logistic Regression,
thereby continuing to play a major role in enhancing the
predictive model's accuracy.

Fasemoon

Tide

Features

Rainfall Model
XGBoost
Logistic Regression

0 5 10 15 20 25 30
Impartance Value

Figure 3 Comparison of the Importance of Features in
Gradient Boosting and Logistic Regression

Rainfall in both models showed the lowest
contribution, with values of around 0.03 in Gradient
Boosting and 5 in Logistic Regression. While its influence is
minor compared to celestial phenomena and tidal forces,
precipitation remains a contributing factor that can increase
the likelihood of tidal inundation when it coincides with peak
tides. Consequently, the findings from this investigation
substantiate the notion that lunar cycles and tidal patterns
warrant primary consideration in tidal flood warning
systems, whereas rainfall is better characterized as an
auxiliary factor that amplifies the potential for tidal flooding.

Evaluation of XGBoost and Logistic Regression Efficacy
Using ROC-AUC

An examination of the preceding ROC Curve
illustration reveals that both the XGBoost and Logistic
Regression models achieve exceptionally high performance,
as evidenced by their respective Area Under the Curve
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(AUC) values of 0.999987 and 0.999996. An AUC value
close to 1 indicates that both models can distinguish between
positive and negative classes with near-perfect accuracy. In
theory, AUC measures a model's ability to perform correct
classification at various thresholds. The higher the AUC
value, the better the model's ability to identify the target
category.
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Figure 6. ROC Comparison Graph

The Receiver Operating Characteristic (ROC) curves
for both demonstrated models display considerable
convergence in the upper-left region. This pattern indicates
outstandingly high true positive rates and remarkably low
false positive rates. These findings highlight the
effectiveness of both Gradient Boosting and Logistic
Regression in accurately identifying tidal flooding while
simultaneously reducing classification errors. Although the
difference is minimal, the Area Under the Curve (AUC) for
Logistic Regression shows a slight advantage, suggesting a
modest improvement in its generalization. Nevertheless,
from a practical perspective, the predictive power of both
models is effectively equivalent. Current investigations
suggest that Logistic Regression models exhibit performance
levels comparable to those of ensemble techniques,
including gradient boosting, particularly in areas such as
calibration and decision analysis. This is especially true
when the dataset is of good quality and lacks excessive
complexity [20].

Conclusion

Based on the study's findings, both Gradient Boosting
and Logistic Regression demonstrate significant capacity to
accurately forecast the likelihood of tidal inundation. The
Gradient Boosting model with the optimal hyperparameter
configuration (max depth = 3, min samples split = 2,
n_estimators = 200) achieved the highest accuracy of
99.96%, demonstrating its ability to recognize complex data
patterns. Meanwhile, Logistic Regression achieved an
optimal accuracy of 99.85% with a penalty of 11, C = 2, and
solver = liblinear, demonstrating excellent performance and
the advantage of ease in interpreting the influence of
predictor variables. An examination of feature significance
revealed that lunar phase was the primary determinant, with
tidal influences ranking second, and precipitation serving as
a supplementary factor. The proximity of the ROC-AUC
values for both models to unity substantiates their efficacy in
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classification tasks. Furthermore, these outcomes may offer
practical examples for physics and environmental education,
illustrating the wuse of data-driven methodologies to
understand natural phenomena. In addition, the results
support environmental management efforts, particularly in
developing early warning systems and adaptive strategies to
mitigate the impacts of tidal flooding on coastal
communities.
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