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Abstract: This research aims to develop a predictive model for tidal inundation at Tanjung Perak Port in Surabaya, a region 

identified as critical and highly susceptible to such events. The foundational data incorporated comprises 

hydrometeorological indicators, such as lunar cycles, tidal patterns, and precipitation levels, which were sourced from the 

BMKG Tanjung Perak Maritime Meteorological Station. A dataset comprising 26,275 individual data points was compiled 

and subsequently partitioned into training sets (80% of the data) and validation sets (20%) via randomization. This 

apportionment is intended to support the robustness and applicability of the developed model. The initial data preparation 

phase involved techniques such as data normalization, imputation of missing values, and the determination of variable 

weights based on their respective degrees of impact. Subsequently, two distinct machine learning methodologies were 

employed to construct the predictive framework: Gradient Boosting (specifically, XGBoost) and Logistic Regression. The 

efficacy of the resultant models was rigorously assessed using various metrics, including accuracy, confusion matrix analysis, 

ROC-AUC scores, and feature significance analysis. Analysis of the outcomes indicated that the Gradient Boosting model 

achieved a superior accuracy of 99.96%, whereas Logistic Regression attained 99.85%. An examination of the features 

revealed that lunar cycles and tidal conditions were the principal determinants of tidal inundation, with precipitation exerting 

a comparatively minor effect. These observations substantiate the efficacy of integrating suitable data preparation techniques 

with machine learning methodologies to achieve precise predictive outcomes. The principal contribution of this investigation 

is the establishment of a computational framework to facilitate the development of an advanced warning system for tidal 

flooding, thereby aiding hazard reduction and limiting adverse societal, financial, and operational consequences in littoral 

regions. 
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Introduction 

 
Coastal areas play a crucial role in supporting 

economic activities, particularly in the maritime 

transportation and interregional distribution sectors. Ports 

are key hubs in the logistics network, both nationally and 

internationally, so smooth port operations are crucial to the 

success of trade and industrial activities [1]. However, 

coastal areas face major challenges in the form of 

hydrometeorological disasters, such as tidal flooding. 

Coastal inundation, characterized by the encroachment of 

ocean water onto terrestrial areas, is frequently initiated by 

elevated tidal levels, which are influenced by lunar 

gravitational forces. Such events are often intensified by 

severe meteorological conditions, including substantial 

precipitation. This occurrence has a detrimental effect on 

various aspects of port operations, notably cargo 

management. Furthermore, it can lead to the deterioration of 

civil engineering structures, impede the societal and 

commercial endeavors of adjacent populations, and engender 

considerable economic repercussions. Consequently, 

establishing an accurate system for forecasting tidal flood 

occurrences is crucial for reducing risk and facilitating 

adaptation strategies in vulnerable coastal regions. This 

study was conducted at Tanjung Perak Port in Surabaya, one 

of Indonesia's major ports, which plays a vital role in national 

logistics distribution. The high density of industrial and 

residential activities around the port increases the complexity 

of the tidal flooding's impacts. This situation requires the 

application of methods capable of predicting potential 

flooding with high accuracy so that mitigation measures and 

policies can be implemented in a timely and effective 

manner. The primary drivers of tidal inundation events are 

hydrometeorological conditions, including lunar cycles, tidal 

elevations, and daily precipitation amounts. Variations in 

lunar phases induce gravitational stresses that impact oceanic 

water level fluctuations. Elevated rainfall contributes to 

increased surface water accumulation, thereby elevating the 

potential for flooding, particularly when synchronized with 

peak tidal periods. The intricate interdependencies among 

these elements produce phenomena that conventional, 

typically linear or descriptive, forecasting approaches 

struggle to accurately represent.  

Coastal inundation is an intermittent hazard affecting 

shorelines, occurring when tidal movements combine with 

various meteorological conditions, causing water to 

submerge low-elevation zones. Such events present 

considerable dangers to metropolitan infrastructure, transit 
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systems, and the economic stability of populations residing 

near the coast. Contemporary investigations have analyzed 

the synergistic impacts of tides and precipitation on 

inundation occurrences by employing a unified 

hydrodynamic methodology and machine learning 

techniques [2]. This research emphasises the significance of 

considering nonlinear dynamics and complex relationships 

among variables in understanding the characteristics of tidal 

flooding. Nevertheless, a predominant number of current 

methodologies continue to rely on descriptive examinations 

or basic statistical techniques, which frequently prove 

insufficient for adequately depicting the multiple factors that 

influence tidal inundation. 

To overcome these constraints, sophisticated 

computational techniques have been investigated. Machine 

learning methodologies, notably, provide a means to 

represent complex, non-linear associations and interplays 

with greater proficiency than traditional strategies. The 

Gradient Boosting approach falls into this category. The 

Gradient Boosting algorithm, in particular, has demonstrated 

substantial predictive power. This approach constructs 

models sequentially by reducing the prediction discrepancies 

from earlier phases, which consequently facilitates the 

detection of intricate patterns that are frequently missed by 

less sophisticated models. [3].  This research employs 

logistic regression as a comparative methodology alongside 

Gradient Boosting. Logistic Regression is a well-established 

statistical technique applied to binary classification tasks. It 

provides a straightforward and comprehensible approach to 

analyzing the impact of independent variables on the 

likelihood of a specific outcome, which in this context 

pertains to tidal inundation. While Logistic Regression 

exhibits constraints in modelling nonlinear associations, its 

strengths include a stable predictive framework and clear 

interpretability. These attributes render it an appropriate 

baseline for assessing more sophisticated algorithms. 

Through the comparison of Gradient Boosting and Logistic 

Regression performance, this investigation facilitates a 

thorough evaluation of machine learning techniques for 

forecasting tidal flooding events at Tanjung Perak Port. The 

expected contribution is the development of a more reliable 

early warning system, which can assist policymakers in 

formulating effective strategies to mitigate 

hydrometeorological disasters in coastal areas that are 

increasingly vulnerable to climate and environmental 

change. 

This is reinforced by high-resolution numerical 

methodologies that consider physical processes in estuarine 

hydrodynamics, serving as a crucial foundation for obtaining 

reliable tidal flood predictions and accurately estimating 

flood extent within estuarine and bay systems [4]. Predictive 

models based on machine learning, such as Gradient 

Boosting and Logistic Regression, can utilize these 

parameters (moon phase, tidal height, rainfall) to more 

accurately estimate the likelihood of tidal flooding and even 

estimate flood levels. The integration of data modelling and 

physical principles is a crucial foundation for developing 

precise and adaptive early warning systems for 

hydrometeorological disasters that account for local 

dynamics [5]. 

Based on the research results, the Gradient Boosting 

model achieved the highest accuracy of 99.96%, while 

Logistic Regression achieved 99.85%, indicating that both 

models have excellent predictive capabilities, with XGBoost 

slightly superior. 

These results are consistent with the findings of 

Zhang et al [6], which reported that XGBoost achieved an 

(Area Under Curve) AUC of 0.94 and an accuracy of 92%, 

higher than Logistic Regression with an AUC of 0.85. 

Similar findings were reported by Pratama et al. [7], who 

found that LightGBM and XGBoost achieved 10–15% 

higher accuracy than Logistic Regression for flood 

prediction in Jakarta.  

Previous research on the capability of Logistic 

Regression to identify flood-susceptible areas in a small 

watershed shows that it is effective for identifying flood-

prone areas when the predictor variables are linear, but less 

optimal for complex spatial data [8]. Conversely, ensemble 

models such as Gradient Boosting are better able to capture 

the complex spatial and temporal dynamics in hydrological 

and estuarine systems. Thus, integrating hydrodynamic 

physical modelling with a Gradient Boosting-based machine 

learning approach is a crucial step toward developing a 

precise, adaptive, and context-aware early warning system 

for the local dynamics of Tanjung Perak Port.  

Although several studies in Indonesia and Southeast 

Asia have examined tidal flooding using statistical 

approaches, remote sensing, or deep learning, such as Water 

Level Time Series Forecasting Using TCN in Surabaya [9], 

deep Learning for Tidal Flood Prediction in West 

Pandeglang, Banten [10], and Tidal Flood Vulnerability 

Assessment in Central Java [11], most of them focus on the 

influence of a single variable, regional vulnerability, or the 

use of a single algorithm, and rarely evaluate the importance 

of variable features in depth. In contrast, this study presents 

a comparative machine learning framework that compares 

Gradient Boosting and Logistic Regression, employing 

comprehensive preprocessing and feature importance 

analysis to determine the relative contributions of the moon 

phase, tides, and rainfall to the potential for tidal flooding at 

Tanjung Perak Port. 

 

Research Methods 
 

This study began with the collection of 

hydrometeorological data from the Meteorology, 

Climatology, and Geophysics Agency (BMKG), specifically 

the Tanjung Perak Surabaya Maritime Meteorological 

Station. Three main variables were used: moon phase, tidal 

range, and daily rainfall. The initial data were obtained in the 

form of graphs or PDF files from routine observations, which 

were then manually converted into Excel format for 

quantitative processing. 

 

 
Figure 1 Workflow of research 
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After the data collection stage was completed, a pre-

processing process was carried out consisting of three main 

steps, namely converting the data from image format to 

Excel format, normalizing all variables to a scale of 0–1 

(where a value of 1 indicates the condition with the highest 

potential for tidal flooding), and weighting the variables 

according to their level of contribution to tidal flooding 

events, namely the moon phase at 0.55, tidal range 0.35, and 

rainfall 0.10. The objective of the normalization and 

weighting stages is to prevent any individual variable from 

disproportionately influencing the model's learning curve 

and to ensure that each parameter's impact is commensurate 

with its importance. Contemporary research has frequently 

used normalization methods, such as min–max scaling and 

Z-score standardization, to reconcile variables measured in 

disparate units. Concurrently, weighting approaches such as 

entropy, AHP, or PCA are applied to assign appropriate 

weights to each factor that affects flood vulnerability [12].  

After normalization and weighting, the collected 

indicators are integrated to form a composite flood potential 

index. This consolidation effectively distils complex, 

multidimensional environmental information into a format 

that is readily understandable on a numerical scale. 

Subsequently, this composite index is segmented into 

distinct classifications, each corresponding to a specific 

degree of flood risk. For instance, a value of 0 might denote 

the absence of tidal flooding, while a value of 1 could signify 

severe tidal flooding. This classification enables more 

precise spatial identification of areas susceptible to flooding. 

Contemporary studies underscore that the method selected 

for normalization, weighting, and classification has a 

substantial impact on the ultimate cartographic 

representation and the ease with which flood potential 

outcomes can be understood. This consequently emphasizes 

the critical need for both methodological uniformity and 

thorough sensitivity analysis[13]. 

 Next, the dataset was divided into two parts: 80% for 

the training set (21,020 data points) and 20% for the test set 

(5,255 data points). This division aimed to evaluate the 

model's ability to generalize previously unseen data. In this 

study, two algorithms—Gradient Boosting and Logistic 

Regression—were used to model the potential for tidal 

flooding. The Gradient Boosting technique was selected for 

its ability to construct models sequentially. This approach 

refines predictions iteratively by addressing prior errors and 

is adept at discerning intricate, non-linear relationships 

within data. Logistic Regression is employed as a 

benchmark, providing a more straightforward and easily 

understood model to explain the relationship between 

predictor variables and the likelihood of tidal flooding. 

Model efficacy is assessed through accuracy metrics, 

confusion matrices, and an examination of feature 

significance to identify the variables that exert the greatest 

influence on classification outcomes. Recent literature shows 

that combining ensemble tree methods with general linear 

models outperforms simpler approaches for flood and hazard 

prediction, both in terms of precision and interpretability 

[14]. With this approach, the research not only produces a 

reliable prediction model but also provides a comprehensive 

assessment of the model's stability as a supporting 

component of an early warning system in coastal areas. 

 

 

Results and Discussion  

 
Hyperparameters of Gradient Boosting and Logistic 

Regression 

 

To obtain the optimal model configuration, several 

combinations of hyperparameters were tested, such as 

max_depth, min_samples_split, and n_estimators. The goal 

was to find the configuration that produced the highest 

accuracy in the classification process.  

 

Table 1. Hyperparameters for gradient boosting  

Max 

depth 

Min samples 

split 

n_estimators Accuracy 

3 2 200 0.99961941 

10 2 50 0.99961941 

3 10 100 0.998287345 

3 2 50 0.994671741 

3 5 50 0.994671741 

 

Various combinations were systematically tested, and 

the test results showed that the optimal combination was 

achieved with the settings max_depth = 3, 

min_samples_split = 2, and n_estimators = 200, yielding a 

model with an accuracy of 99.96%. This arrangement 

maintains the model's straightforwardness and prevents 

excessive fitting to the training data, while simultaneously 

enabling progressive error refinement via the boosting 

process. 

The visualization presented delineates the outcomes 

of optimizing the hyperparameters for the Logistic 

Regression algorithm. This assessment involved a 

methodical exploration of various settings for the 

regularisation strength (C) and the optimisation algorithm 

employed. The C parameter controls the strength of 

regularization imposed on the model. An elevated C value 

allows the model to capture intricate data patterns more 

effectively, while a reduced C value enforces stronger 

regularization, resulting in a simpler model, though this 

simplification may compromise predictive accuracy. The 

regularization techniques, identified as l1 and l2, were 

implemented to control the regularization process, with C 

dictating the magnitude of this control (a larger C signifies 

less regularization). In parallel, optimization routines such as 

liblinear and lbfgs were utilized for model fitting. Academic 

discourse has addressed comparable methodological 

considerations concerning the effect of regularization on 

logistic regression within high-dimensional environments 

[15]. This optimization process aims to determine the 

configuration that yields superior classification precision, 

while concurrently balancing model complexity and 

predictive performance across independent datasets. 

While Gradient Boosting is recognized for its ability 

to achieve high accuracy, this modelling approach has 

certain limitations. A notable disadvantage is its 

susceptibility to overfitting, especially when used with small 

or imbalanced datasets. Furthermore, Gradient Boosting 

requires meticulous tuning of its hyperparameters to achieve 

peak performance; consequently, selecting unsuitable 

parameter values can compromise the model's predictive 

generalization. From a computational standpoint, this 

methodology is comparatively more demanding than simpler 

algorithms, resulting in longer model training times and 
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substantial memory requirements. This research underscores 

that the problem of overfitting within Gradient Boosting can 

be addressed through the implementation of cross-validation 

and thorough data preprocessing methods, thereby 

improving the model's capacity to generalize to unseen data 

[16].  

 

Table 2 Logistic Regression Hyperparameters 

Penalty C Solver Accuracy 

l1 2 liblinear 0.99847764 

l1 1 liblinear 0.99809705 

l1 0,5 liblinear 0.996574691 

l2 2 lbfgs 0.971075167 

l2 1 lbfgs 0.970313987 

l2 0,5 lbfgs 0.967269267 

 

Analysis of the data presented in the table indicates 

that Model 7, characterized by an L1 configuration penalty, 

a C value of 2, and the liblinear solver, yielded the optimal 

outcome. This configuration achieved the highest accuracy 

rate at 99.85%, as highlighted in yellow. Conversely, Model 

2, employing an L2 penalty, a C value of 0.5, and the lbfgs 

solver, yielded the lowest accuracy of 96.73%. This disparity 

underscores the substantial influence that the choice of 

regularization type, regularization strength, and optimization 

algorithm can exert on a model's overall effectiveness. 

Notwithstanding these variations, all evaluated 

configurations demonstrated a commendable accuracy 

exceeding 96%, implying that the dataset possesses 

sufficiently discernible patterns to be effectively delineated 

using Logistic Regression. 

Logistic Regression has several important limitations, 

despite its frequent use, due to its simplicity and ease of 

interpretation. One limitation is that when the outcome 

(dependent variable) is a relatively common event (>10%), 

the odds ratio estimate from Logistic Regression can be 

biased when the underlying assumption is prevalence or risk 

(prevalence ratio/relative risk) [17]. In addition, Logistic 

Regression tends not to handle highly complex or non-linear 

data structures well unless feature transformations or 

variable interactions are explicitly applied. This model can 

also be disrupted by multicollinearity among predictor 

variables, and its performance is suboptimal when the data 

are incomplete or contain many missing values [18]. 

 

Confusion Matrix of Gradient Boosting and Logistic 

Regression 

 

Evaluating model performance using a matrix 

provides a clear picture of the classification accuracy 

achieved by each method. Both the Gradient Boosting 

technique and Logistic Regression exhibit strong predictive 

performance, with minimal misclassifications observed in 

the evaluation dataset. Gradient Boosting achieves superior 

accuracy, whereas Logistic Regression, despite a marginal 

decrease in accuracy, yields dependable outcomes and 

provides enhanced clarity regarding the influence of 

predictor variables. 

 
(a) 

 

 
(b) 

Figure 2. Confusion matrix of (a) Gradient Boosting, (b) 

Logistic Regression. 

 

The Gradient Boosting model performed excellently 

when evaluated using a confusion matrix. Analysis of the test 

results indicates that the model accurately classified 1,401 

instances within the "not prone to tidal flooding" group, with 

a single misidentified case. Conversely, within the "potential 

tidal flooding" classification, all 3,853 data entries were 

accurately assessed, resulting in no false negatives. These 

findings demonstrate Gradient Boosting's proficiency in 

discerning data trends with high accuracy, encompassing 

both the identification of secure environments and the 

recognition of hazardous situations. With a total accuracy of 

99.98%, the model has demonstrated its high reliability for 

integration into early warning frameworks. The low 

incidence of predictive errors is a crucial benefit, serving to 

prevent the dissemination of erroneous information, avert 

public alarm, and ensure that intervention measures are 

implemented only when demonstrably warranted. 

Despite a marginally lower accuracy than Gradient 

Boosting, the Logistic Regression model demonstrates 

commendable efficacy. Across the entire test data set, this 

model correctly predicted 1,399 data points in the “potential 

tidal flooding” category. There were only three cases that 

should have been classified in this category but were instead 

predicted as “not at risk of tidal flooding,” resulting in false 

negatives. Regarding the classification of areas not 

susceptible to tidal flooding, Logistic Regression exhibited 

complete accuracy, correctly identifying all 3,853 instances 

without any erroneous predictions. The model's overall 

performance registered an accuracy rate of 99.92%. 

A significant advantage of Logistic Regression is its 

ability to clearly illustrate how specific predictor variables 

influence the probability of a particular event. This 

characteristic facilitates the analysis and subsequent 
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communication of results to relevant parties. Therefore, 

despite Gradient Boosting's greater predictive power, 

Logistic Regression remains a viable option, especially when 

understanding the underlying relationships is of primary 

importance. For instance, the study titled Gradient Boosting 

achieves higher accuracy than Logistic Regression with large 

datasets. Logistic Regression is more readily explainable to 

individuals without technical expertise due to its directly 

interpretable coefficients, as shown in the study of Seto et.al  

[19].  

 

A Comparative Examination of Feature Significance in 

Gradient Boosting and Logistic Regression Models 

 

The comparative evaluation of feature importance 

across these two modelling approaches indicates that the 

lunar phase consistently emerges as the predominant 

determinant of tidal inundation likelihood. In the Gradient 

Boosting model, the lunar phase contributes nearly 0.7, 

whereas in Logistic Regression, it reaches around 30, which 

is significantly greater than that of other variables. This 

suggests that astronomical factors, specifically the position 

and phase of the moon, are closely linked to the dynamics of 

tidal movements, which are the primary drivers of tidal 

flooding. Meanwhile, tidal parameters rank second in both 

models, with significant importance levels of approximately 

0.3 in Gradient Boosting and 20 in Logistic Regression, 

thereby continuing to play a major role in enhancing the 

predictive model's accuracy. 

 

 
Figure 3 Comparison of the Importance of Features in 

Gradient Boosting and Logistic Regression 

 

Rainfall in both models showed the lowest 

contribution, with values of around 0.03 in Gradient 

Boosting and 5 in Logistic Regression. While its influence is 

minor compared to celestial phenomena and tidal forces, 

precipitation remains a contributing factor that can increase 

the likelihood of tidal inundation when it coincides with peak 

tides. Consequently, the findings from this investigation 

substantiate the notion that lunar cycles and tidal patterns 

warrant primary consideration in tidal flood warning 

systems, whereas rainfall is better characterized as an 

auxiliary factor that amplifies the potential for tidal flooding. 

  

Evaluation of XGBoost and Logistic Regression Efficacy 

Using ROC-AUC 

 

An examination of the preceding ROC Curve 

illustration reveals that both the XGBoost and Logistic 

Regression models achieve exceptionally high performance, 

as evidenced by their respective Area Under the Curve 

(AUC) values of 0.999987 and 0.999996. An AUC value 

close to 1 indicates that both models can distinguish between 

positive and negative classes with near-perfect accuracy. In 

theory, AUC measures a model's ability to perform correct 

classification at various thresholds. The higher the AUC 

value, the better the model's ability to identify the target 

category. 

 

 
Figure 6. ROC Comparison Graph 

 

The Receiver Operating Characteristic (ROC) curves 

for both demonstrated models display considerable 

convergence in the upper-left region. This pattern indicates 

outstandingly high true positive rates and remarkably low 

false positive rates. These findings highlight the 

effectiveness of both Gradient Boosting and Logistic 

Regression in accurately identifying tidal flooding while 

simultaneously reducing classification errors. Although the 

difference is minimal, the Area Under the Curve (AUC) for 

Logistic Regression shows a slight advantage, suggesting a 

modest improvement in its generalization. Nevertheless, 

from a practical perspective, the predictive power of both 

models is effectively equivalent. Current investigations 

suggest that Logistic Regression models exhibit performance 

levels comparable to those of ensemble techniques, 

including gradient boosting, particularly in areas such as 

calibration and decision analysis. This is especially true 

when the dataset is of good quality and lacks excessive 

complexity [20]. 

 

Conclusion  

 
Based on the study's findings, both Gradient Boosting 

and Logistic Regression demonstrate significant capacity to 

accurately forecast the likelihood of tidal inundation. The 

Gradient Boosting model with the optimal hyperparameter 

configuration (max_depth = 3, min_samples_split = 2, 

n_estimators = 200) achieved the highest accuracy of 

99.96%, demonstrating its ability to recognize complex data 

patterns. Meanwhile, Logistic Regression achieved an 

optimal accuracy of 99.85% with a penalty of l1, C = 2, and 

solver = liblinear, demonstrating excellent performance and 

the advantage of ease in interpreting the influence of 

predictor variables. An examination of feature significance 

revealed that lunar phase was the primary determinant, with 

tidal influences ranking second, and precipitation serving as 

a supplementary factor. The proximity of the ROC-AUC 

values for both models to unity substantiates their efficacy in 
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classification tasks. Furthermore, these outcomes may offer 

practical examples for physics and environmental education, 

illustrating the use of data-driven methodologies to 

understand natural phenomena. In addition, the results 

support environmental management efforts, particularly in 

developing early warning systems and adaptive strategies to 

mitigate the impacts of tidal flooding on coastal 

communities. 
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