

A Life Lost, A Lesson Learned: Ecological and Emotional Impacts of a White-Throated Kingfisher's Death

Deepshikha Shree¹, Md Abu Imran Mallick^{2*}, Sima Paik¹, Kumari Komal¹, Shiladitya Acharjee³, Shaba Alam Ansari⁴, Smitha Pankaj⁵

¹Department of Zoology, Dr. Shyama Prasad Mukherjee University, Ranchi, Jharkhand, India

²Department of Zoology, West Bengal State University, Barasat, North 24 Parganas, West Bengal, India

³Wildlife researcher, Jamshedpur Forest Division, Jamshedpur, Jharkhand, India

⁴Divisional Forest Officer, Jamshedpur Forest Division, Jamshedpur, Jharkhand, India

⁵Regional Chief Conservator of Forest Singhbhum, Jharkhand, India

*e-mail: imranmallick708@gmail.com

Received: September 2, 2025. Accepted: September 19, 2025. Published: November 23, 2025

Abstract: This study presents a reflective account of a personal encounter with a dead White-Throated Kingfisher (*Halcyon smyrnensis*) during fieldwork, highlighting the ecological and emotional implications of its death. The incident, likely attributed to heat stress exacerbated by climate change, serves as a poignant reminder of the vulnerability of even resilient species to human-induced environmental pressures. Through a species profile, analysis of environmental stressors, and exploration of anthropogenic threats, this study underscores the urgent need for conservation efforts, climate action, and habitat protection. The emotional impact of the encounter emphasizes the importance of recognizing the intrinsic value of wildlife and the interconnectedness of human and environmental well-being. This research aims to contribute to a deeper understanding of the complex relationships between humans and wildlife, inspiring collective action to mitigate the pressing environmental challenges of our time.

Keywords: Conservation; Ecological Imbalance; Emotional Impact; White-Throated Kingfisher; Wildlife-Human Interactions.

Introduction

The White-throated Kingfisher (*Halcyon smyrnensis*) is a vivid emblem of avian adaptability across diverse habitats in the Indian subcontinent [1], [2]. Known for thriving in wetlands and urban edges through versatile foraging [3], this species nonetheless faces mounting environmental pressures [4], [5]. Recent studies underscore avian vulnerability to climate-induced stressors like heatwaves [6], [7], spotlighting gaps in translating ecological awareness into impactful conservation action. Against this backdrop, this study employs a reflective narrative of encountering a deceased White-throated Kingfisher during fieldwork—a poignant reminder of wildlife's susceptibility to anthropogenic drivers, such as climate change. Bridging ecological analysis with personal reflection, this approach offers a novel lens on the interplay of human emotions, environmental health, and conservation urgency. We explore implications of this encounter for understanding species vulnerability and catalyzing climate-responsive conservation efforts.

Kingdom: Animalia Phylum: Chordata Class: Aves

Order: Coraciiformes Family: Alcedinidae

Subfamily: Halcyoninae Genus: *Halcyon*

Species: *Halcyon smyrnensis* (Linnaeus, 1758) (Figure 1) [11]

The White-throated Kingfisher can be found in various locations worldwide, including Turkey, India, China, and Southeast Asia, particularly in countries such as Indonesia, Malaysia, and the Philippines. In the Middle East, they inhabit countries such as Israel, Jordan, and Saudi Arabia. Within India, they are widespread, with sightings reported in diverse regions, including the Andaman and Nicobar Islands, the Himalayan foothills in states such as Uttarakhand and Himachal Pradesh, as well as in wetlands and lakes found in Bharatpur, Rajasthan, and West Bengal. They also thrive in urban areas, including cities like Delhi, Mumbai, and Kolkata, as well as in agricultural landscapes such as rice paddies and farmlands in states like Punjab, Haryana, and Tamil Nadu [8], [9]. This adaptability allows them to occupy a broad range of habitats across their distribution (Figure 2).

The White-throated Kingfisher is a highly adaptable species that inhabits a wide range of habitats, including dams, ponds, canals, swamps, mangrove edges, agricultural areas, and even urban environments like gardens and industrial sites [11]. However, it tends to avoid dense forests, except for clearings, and is less common at elevations above 2,000 meters. The species' breeding habits

How to Cite:

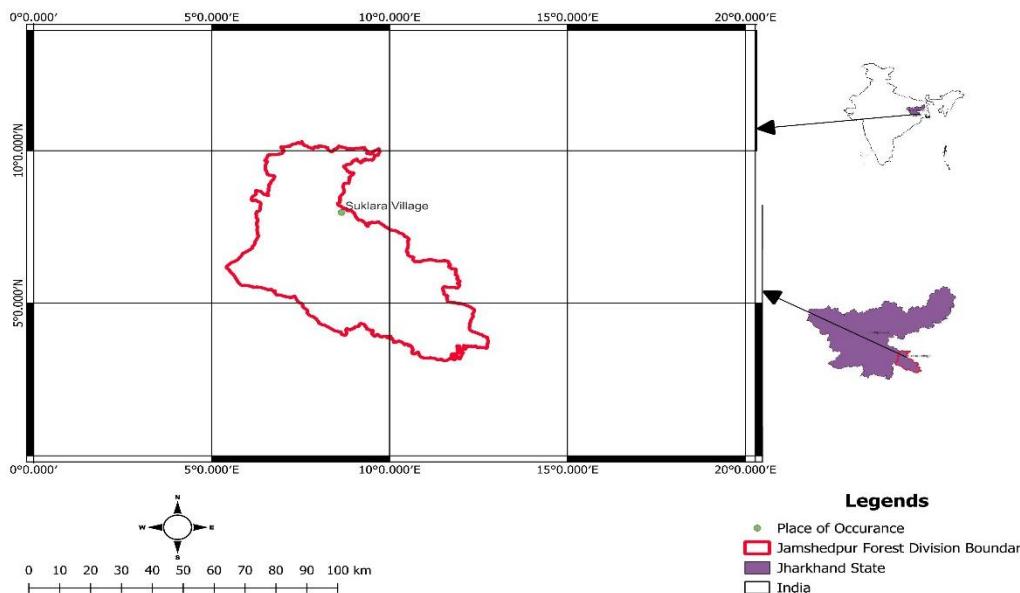
D. Shree, "A Life Lost, A Lesson Learned: Ecological and Emotional Impacts of a White-Throated Kingfisher's Death", *J. Pijar.MIPA*, vol. 20, no. 7, pp. 1204-1209, Nov. 2025. <https://doi.org/10.29303/jpm.v20i7.10116>

vary geographically, with different regions having distinct breeding seasons, such as April to May in India and March to April in Sri Lanka. They are typically monogamous, but there is evidence of possible communal breeding in some areas [12]. The nest is usually excavated in an earthen bank or, occasionally, in a territorial rock crevice or tree hole, with a tunnel leading to a chamber where the eggs are laid.

The species' diet is diverse and includes a wide variety of invertebrates and vertebrates, such as insects, crustaceans, fish, frogs, lizards, and small mammals, which they hunt from a perch and often batter before consuming [12]. Many populations exhibit partial short-distance migration, characterised by seasonal changes in abundance, which often involve mostly juveniles.

Figure 1. White-throated Kingfisher (*Halcyon smyrnensis*) diving for lunch

Figure 2: The White-throated Kingfisher's distribution range spans across various countries in Asia, with a presence in diverse habitats, from wetlands to urban areas [10].


Research Methods

This study is based on a reflective observational account of encountering a deceased White-throated

Kingfisher (*Halcyon smyrnensis*) in Suklara village, Ghatshila, Jharkhand, India (22.755722° N, 86.429012° E) on May 21, 2025, at approximately 1:15 PM (Figure 3). The observation occurred during fieldwork involving a Human-

Elephant Conflict (HEC) questionnaire survey in the area, characterized by agricultural fields, grasslands, scattered trees (including palms), and proximity to human settlements. The encounter was opportunistic, noted during routine field movement activities following the survey. Data capture involved taking immediate field notes to document contextual details (location, time, and habitat

features), and subsequently reflecting on the ecological and emotional dimensions of the incident through journaling. Analysis entailed a thematic reflection on species vulnerability, environmental stressors such as heat stress potentially linked to climate change, and conservation implications.

Figure 3. Map of the study area in Suklara Village, Ghatshila, Jharkhand

Results and Discussion

On May 21, 2025, at approximately 1:15 PM, during return travel from Suklara village, Ghatshila, Jharkhand, India (following a Human-Elephant Conflict survey), a deceased White-throated Kingfisher (*Halcyon smyrnensis*)

was observed beside the road (22.755722° N, 86.429012° E). The bird showed no signs of life; characteristic features included brilliant electric blue wings, a bright red beak, and white throat plumage (Figure 4). Field observations suggested that probable heat stress was a contributing factor, given the midday conditions and rising global temperatures.

Figure 4. A lifeless White-throated Kingfisher, its vibrant blue plumage now still

Figure 5. Laying a fallen kingfisher to rest

The encounter with the deceased kingfisher underscores avian vulnerability to environmental stressors like climate-induced heat extremes [6], [7]. White-throated Kingfishers (*Halcyon smyrnensis*), although adaptable across various habitats [3], [2], are not immune to anthropogenic pressures that exacerbate mortality risks. The emotional impact of witnessing the bird's death—a blend of sorrow, devastation—highlights personal connections to wildlife and catalyzes reflection on broader conservation imperatives. Ecologically, such incidents signal potential population-level repercussions of escalating climate stress on avifauna [4]. The poignant contrast between the kingfisher's radiant plumage and its lifeless form (Figure 5) evokes a sense of urgency for climate-responsive conservation strategies that mitigate anthropogenic drivers of wildlife mortality.

Species Profile and Significance

The White-throated Kingfisher (*Halcyon smyrnensis*) is a versatile and widespread species in India, thriving in diverse environments, from aquatic habitats to non-aquatic landscapes. As a mesopredator, it plays a crucial role in maintaining ecological balance by regulating prey populations and influencing food webs [13]. Additionally, the species serves as a bio-indicator, reflecting the overall health of its ecosystem and providing valuable insights into environmental changes and habitat quality [14]. Beyond its ecological significance, the White-throated Kingfisher holds cultural importance, symbolizing clarity, focus, and natural beauty in various regional traditions [15]. Its striking appearance and behaviors have captivated human imagination, making it a beloved bird in many communities.

Environmental Stressors

The death of the White-throated Kingfisher, likely attributed to heat stress, highlights the growing concern of climate change's impact on wildlife [16]. Rising

temperatures and erratic climate patterns are increasingly stressing both humans and animals, with birds being particularly vulnerable to heatwaves [17]. The unusually high temperatures in May 2025 in the region likely exacerbated the bird's condition, leading to dehydration, disorientation, and ultimately, organ failure.

This incident serves as a poignant reminder of the vulnerability of even resilient species, such as the Kingfisher, to human-induced environmental pressures. As temperatures continue to rise, understanding the impact of environmental stressors on bird populations becomes crucial for conservation efforts [16]. The Kingfisher's susceptibility to heat stress underscores the need for proactive measures to mitigate the effects of climate change and protect wildlife from the devastating consequences of environmental degradation.

Anthropogenic Threats

The White-throated Kingfisher faces numerous anthropogenic threats that impact its survival. Historically, the species was hunted for its vibrant feathers; however, today it confronts more complex dangers, including road traffic, habitat fragmentation, pesticide contamination, and collisions with glass and wires [18]. These threats are exacerbated by urbanization and agricultural practices, which can lead to habitat destruction, pollution, and increased mortality rates [19]. Despite being listed as Least Concern by the IUCN, the species' vulnerability to these growing pressures underscores the need for continuous monitoring and conservation efforts to mitigate these threats and ensure its long-term survival.

Symbolic and Emotional Impact

The encounter with the lifeless White-throated Kingfisher had a profound symbolic and emotional impact, one that transcended the loss of a single bird. It served as a poignant reminder of the far-reaching consequences of human activities on the environment. The incident evoked

a sense of urgency and sorrow, underscoring the need for collective action to protect wildlife and mitigate environmental challenges. The Kingfisher's demise symbolized the vulnerability of even resilient species to human-induced pressures, highlighting the importance of responsible stewardship of the natural world [20].

Reflections

The encounter with the White-throated Kingfisher highlights the complex relationships between humans and wildlife, emphasizing the need for collective action to address pressing environmental challenges. This experience underscores the intrinsic value of wildlife and the interconnectedness of human and environmental well-being, illustrating the delicate balance between humans and the natural world [21]. The emotional impact of losing a familiar species, such as the Kingfisher, serves as a poignant reminder of our responsibility toward the environment, fostering a deeper appreciation for wildlife conservation. By reflecting on such encounters, we can work towards creating a more harmonious coexistence between humans and the environment, emphasizing the importance of sustainable practices and conservation efforts to preserve biodiversity and ensure a healthier planet for future generations.

Conclusions

The death of the white-throated kingfisher serves as a poignant reminder of the far-reaching consequences of ecological imbalance. As a planet faces unprecedented pressure, even resilient species like the kingfisher are vulnerable to the devastating impacts of climate change, habitat loss, and human activities. It is imperative that we recognize these signs and take collective action to mitigate these threats through conservation efforts, climate action, habitat protection, and public awareness. Every species, no matter how small, plays a vital role in the intricate web of life, and their loss will ultimately resonate within our own lives. By choosing to listen to the voices of nature, we can work towards a more sustainable future, preserving the delicate balance of our ecosystems for future generations.

Author Contributions

The authors' contributions to the manuscript are as follows: Deepshikha Shree conducted field work and wrote the manuscript. Md Abu Imran Mallick was involved in field work, study design, supervision, data analysis, and manuscript writing and review. Sima Paik and Kumari Komal contributed to the field work. Shiladitya Acharjee created the study area map. Shaba Alam Ansari and Smitha Pankaj provided supervision for the study.

Acknowledgement

We would like to express our heartfelt gratitude to the Jamshedpur Forest Department, Government of Jharkhand, India, for their invaluable support and cooperation during our study. We are also grateful to the Department of Zoology, Dr. Shyama Prasad Mukherjee University, Ranchi, Jharkhand, India, for their support and cooperation.

Their resources and expertise were essential to the success of our research.

References

- [1] J. Beilby, "The behavioural biology of hornbills, toucans, and kingfishers," in *The Behavioural Biology of Zoo Animals*, CRC Press, 2022, pp. 185-196.
- [2] C. T. Shifa et al., "Kingfisher in Mangroves: Unveiling Ecological Insights, Values, and Conservation Concerns," in *Mangroves in a Changing World: Adaptation and Resilience*, Cham: Springer Nature Switzerland, 2024, pp. 111-123, doi: 10.1007/978-3-031-67691-8_8.
- [3] J. Borah, "Occupancy pattern and food-niche partitioning among sympatric kingfishers in Bhitarkanika mangroves, Orissa," M.S. thesis, Wildlife Institute of India, 2011.
- [4] C. H. Şekercioğlu et al., "Avian biodiversity collapse in the Anthropocene: drivers and consequences," *Frontiers in Ecology and Evolution*, vol. 11, p. 1202621, 2023, doi: 10.3389/fevo.2023.1202621.
- [5] Q. Zhang et al., "Avian responses to an extreme ice storm are determined by a combination of functional traits, behavioural adaptations and habitat modifications," *Scientific Reports*, vol. 6, no. 1, p. 22344, 2016, doi: 10.1038/srep22344.
- [6] S. R. Conradie et al., "An evaluation of a biophysical model for predicting avian thermoregulation in the heat," *Journal of Experimental Biology*, vol. 226, no. 15, jeb245066, 2023, doi: 10.1242/jeb.245066.
- [7] E. J. Cunningham et al., "The incursion of Highly Pathogenic Avian Influenza (HPAI) into North Atlantic seabird populations: an interim report," *Seabird*, vol. 34, pp. 67-73, 2022, doi: 10.61350/sbj.34.67.
- [8] BirdLife International, "Species factsheet: White-throated Kingfisher *Halcyon smyrnensis*," 2016, accessed: Jun. 19, 2025. [Online]. Available: (<https://datazone.birdlife.org/species/factsheet/white-throated-kingfisher-halcyon-smyrnensis> 19/06/2025).
- [9] BirdLife International, "IUCN Red List for birds," 2025, accessed: Jun. 19, 2025. [Online]. Available: (<https://datazone.birdlife.org>).
- [10] BirdLife International, accessed: Jun. 19, 2025. [Online]. Available: (<https://datazone.birdlife.org/search?cameraPosition=-108.80674942273464,68.85127445777366,108.8067494227347,49.93648830957105&species=%5B%7B%22id%22%3A1016514%2C%22name%22%3A%22Whitethroated%20Kingfisher%22%7D%5D&sitesEnabled=true&protectedAreasEnabled=true&limitSiteSize=true>).
- [11] E. U. Rehman et al., "Documenting Nesting and Breeding Ecology with Time Activity Budget of White-Throated Kingfisher (*Halcyon smyrnensis*) in Swat, Pakistan," *Pakistan Journal of Zoology*, vol. 54, no. 6, p. 2845, 2022, doi: 10.17589/pjz.v54i6.5500.

10.17582/journal.pjz/20210722100759.

[12] P. F. Woodall and G. M. Kirwan, "White-breasted Kingfisher (*Halcyon smyrnensis*)," in *Handbook of the Birds of the World alive*, J. del Hoyo, A. Elliott, J. Sargatal, D. A. Christie, and E. de Juana, Eds., Barcelona: Lynx Edicions, 2016.

[13] J. Terraube and V. Bretagnolle, "Top-down limitation of mesopredators by avian top predators: a call for research on cascading effects at the community and ecosystem scale," *Ibis*, vol. 160, no. 3, 2018, doi: 10.1111/ibi.12581.

[14] F. A. Egwuah, P. O. Egwuah, and D. I. Edet, "Paramount roles of wild birds as bioindicators of contamination," *International Journal of Avian & Wildlife Biology*, vol. 2, no. 6, pp. 194-199, 2017, doi: 10.15406/ijawb.2017.02.00041.

[15] Q. H. Vuong and M. H. Nguyen, "Kingfisher: Contemplating the connection between nature and humans through science, art, literature, and lived experiences," *Pacific Conservation Biology*, vol. 30, no. 1, 2023, doi: 10.1071/PC23044.

[16] C. T. Shifa et al., "Long-term anthropogenic stressors cause declines in kingfisher assemblages in wetlands in southwestern India," *Ecological Indicators*, vol. 155, p. 111062, 2023, doi: 10.1016/j.ecolind.2023.111062.

[17] T. D. Costa, J. R. C. de Moraes, J. L. Timoteo, and J. Rosa, "Evaluation of the vulnerability of wild bird populations during heatwave events: implications for biodiversity conservation," *Studies in Health Sciences and Services*, vol. 4, no. 4, pp. 1483-1502, 2023, doi: 10.54022/shsv4n4-027.

[18] J. D. Siler, "Morbidity and mortality of birds at two wildlife rehabilitation centers," M.S. thesis, State University of New York College of Environmental Science and Forestry, 2004.

[19] G. Seress and A. Liker, "Habitat urbanization and its effects on birds," *Acta Zoologica Academiae Scientiarum Hungaricae*, vol. 61, no. 4, pp. 373-408, 2015, doi: 10.17109/AZH.61.4.373.2015.

[20] T. Bralower and A. Millet, *Endangered Species and Ecosystems. Communities in Crisis: Student Voices on Climate Change*, 2021.

[21] H. Naher and N. J. Sarker, "Nest and nest characteristics of common kingfisher (*Alcedo atthis*) and white-throated kingfisher (*Halcyon smyrnensis*) in Bangladesh," *Bangladesh Journal of Zoology*, vol. 44, no. 1, pp. 99-109, 2016, doi: 10.3329/bjz.v44i1.30180.

[22] S. O'Connor and J. O. Kenter, "Making intrinsic values work; integrating intrinsic values of the more-than-human world through the Life Framework of Values," *Sustainability Science*, vol. 14, no. 5, pp. 1247-1265, 2019, doi: 10.1007/s11625-019-00715-7.