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Abstract: Climate is one factor that can influence plant growth. The risk of crop failure due to climate variability can be in 

the form of reduced water sources, which impact water needs in the land and the emergence of pests and diseases in plants. 

The risk of planting failure can impact product quality, which has the potential to decrease, higher plant handling costs, and 

various things that cause losses to farming businesses. The availability of climate forecast information, such as rainfall and 

other parameters, encourages writers to apply it to information that is easier for users to understand. One of the machine 

learning algorithms, Decision Tree, is used as a model in determining the risk of planting failure based on each 

attribute/parameter, including monthly rain, ENSO and IOD phenomena, drought, groundwater availability, and Oldeman 

climate type. This study aims to make a model prediction of crop failure risk potential, and the calculation is based on 

climate prediction data. The results of this study show differences in climatic conditions for each commodity when there is 

an increased potential risk of planting failure. Monthly rainfall is the most dominant factor influencing rice, maize, and 

soybean planting failure. Validation of the decision tree model shows that this model is quite good in determining the 

potential risk of crop failure in all commodities studied, with the proportion of correct proportion of more than 65%. 

However, the Heidke Skill Score (HSS) shows that this model is good for Paddy and Soybean; Maize shows an HSS of less 

than zero.  
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Introduction 
 

Agriculture is one of the most important sectors in 

the world, including Indonesia. This is because the main job 

of Indonesian people is farming. Based on data from 

Statistics Indonesia [1], the number of people working in 

agriculture, forestry and fisheries has reached 37 million. 

This sector (one of which is agriculture) is still very popular 

among Indonesians because, through the activity, they can 

supply food that must be fulfilled, such as rice, maize, 

soybeans, or other staple foods. To ensure food security, a 

global issue, the Indonesian government has made various 

ways, one of which is the food self-sufficiency program [2]. 

Apart from that, the government also issued regulations to 

16 Ministers and Heads of Agencies as well as all 

Governors throughout Indonesia in the form of The 

President of the Republic of Indonesia Instruction Number 

5 of 2011 concerning Securing National Rice Production in 

the Face of Extreme Climates [3]. 

West Nusa Tenggara Province is one of the food 

production centers in Indonesia, which has a high harvest 

area and production of food crops such as rice, maize, and 

soybeans [4]. Therefore, West Nusa Tenggara province and 

several other provinces have been designated rice self-

sufficient areas and have become contributor areas to 

national food crops that are quite high in quantity. 

Agricultural activities are the leading sector in the West 

Nusa Tenggara region, making this province part of the 

rural region in Indonesia. However, the climate conditions 

in West Nusa Tenggara are one of the challenges that 

farmers must face. The existence of the presidential 

instructions mentioned previously makes the 

Meteorological, Climatological, and Geophysics Agency 

for Indonesia (BMKG) obligated to make extreme climate 

analyses and forecasts. It has to disseminate climate early 

warning information to related agencies (such as the 

Ministry of Agriculture) [5]. 

Agricultural activities are greatly influenced by 

various factors, one of them being weather and climate 

(extreme climate conditions or climate change). Climate 

change can affect the planting period, increase plant pest 

attacks, increase the risk of crop failure, and decrease crop 

yields and farmer incomes [6]. One indicator of climate 

change is the increasing intensity and frequency of extreme 

rainfall. High rainfall intensity can cause puddles or 

possibly flooding, which can then damage crops and result 

in crop failure and crop failure [7]. Apart from flooding, 

another problem that is a challenge for agriculture is 

drought conditions. Drought can be described as a period 

that occurs in reduced rainfall until it is below normal in an 

area. Extreme climate will worsen drought conditions in a 

region. Agriculture is one of the sectors most vulnerable to 

drought disasters. Apart from flooding, another problem 

that challenges agriculture is drought conditions. Drought is 

a period of reduced rainfall below normal in an area. 

Extreme climate will worsen drought conditions in a region. 

Agriculture is one of the sectors that are most vulnerable to 

drought disasters. 

The frequency of long dry seasons or droughts in 

Indonesia in 1844 and 1960 was only one time in 4 years; 
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from 1961-2006, the frequency increased to 1 time in 2-3 

years [8]. According to the Directorate of Plant Protection 

[9], drought will have an impact on decreasing surface and 

groundwater supplies, disrupting cropping patterns, and 

potentially increasing crop failure; the first rainy season 

after the drought, based on experience, can increase attacks 

by the main pests (rats, leafhoppers, stem borers and 

grasshoppers) and land fires agriculture and forests have the 

potential to increase. 

The West Nusa Tenggara region is vulnerable to 

drought disasters. In 2020, the drought disaster also hit the 

West Nusa Tenggara region, covering 6,730 hectares of rice 

fields experiencing drought and 459 hectares of rice fields 

(threatened by crop failure) [10]. Drought events have also 

occurred in other areas; for example, drought in Indramayu 

Regency [11] is the main cause (79.8%) of crop failure 

apart from OPT (15.6%) and flooding (5.6%). Droughts 

generally last for 1-8 months. Farmers experienced drought 

most often for six months (32%). Farmers most often 

experience drought in June (32.2%). The peak of drought 

events generally occurs in the Gadu season, namely June-

August. 

Increasingly uncertain climate conditions and the 

absence of impact-based climate information, especially in 

the agricultural sector, make it necessary to carry out and 

develop this study. The limitations of climate information 

users in interpreting information issued by BMKG make 

this climate-based crop failure information system a 

solution for the public, especially farmers, to understand the 

climate better. Apart from that, people can be more aware 

of the importance of climate so that the benefits of this 

information become more pronounced. Based on this, the 

specific purpose of this study is to develop a model for 

calculating the value of the risk of failure of agricultural 

commodity crops.  

 

Research Methods 
 

In this research, the data that will be used to build 

the model is divided into two, namely climate data (local 

and global) and agricultural data, which are described as 

follows: 

 

Local climate data are divided into rainfall data and air 

temperature data. Monthly rainfall data was obtained from 

12 collaborative rain posts in the Central Lombok Regency 

from January 2018 to March 2023. Meanwhile, the air 

temperature data came from West Nusa Tenggara's 

Climatology Station and Zainudin Abdul Majid's 

Meteorology Station. Locations for observing rainfall and 

air temperature are in Table 1. 

 

Global climate data consists of ENSO index data and 

Dipole Mode index, which comes from the JMA (Japan 

Meteorological Agency) with the same period as local 

climate data. 

 

Agricultural data consist of the planting area and harvest 

area data in each category, namely Rice, Maize, and 

Soybeans, obtained from the Central Lombok Regency 

Agricultural Service. 

 

The methods consist of several calculations; then, 

the model development will use the Decision Tree method. 

Initial calculations in the study to determine the amount of 

risk were obtained based on six variables, namely Monthly 

Rainfall, ENSO Index, Dipole Mode Index, Ground Water 

Availability, Oldeman Climate Type, and Drought Index 

using the categorized Standardized Precipitation Index 

(SPI). The weight of each variable is determined 

sequentially based on the correlation value between the 

variables used and crop production results. The agricultural 

data used are the planting area and harvest area data in each 

category for Central Lombok rice, maize, and soybean 

commodities. 

 

Table 1. Location of data collection 

No Location (Rainfall Stations/ 

BMKG Stations) 

Latitude Longitude 

1 Batukliang 116.30 -8.57 

2 Central of Praya 116.31 -8.73 

3 Southwest of Praya 116.20 -8.73 

4 Janapria 116.4 -8.69 

5 Kopang 116.38 -8.63 

6 Mantang 116.31 -8.62 

7 East of Praya 116.36 -8.78 

8 Praya 116.28 -8.65 

9 West of Praya 116.23 -8.77 

10 Pringgarata 116.25 -8.62 

11 Pujut 116.3 -8.82 

12 Puyung 116.23 -8.69 

13 
Climatology Station of 

West Nusa Tenggara 
116.17 -8.63 

14 
Meterology Station of 

Zainudin Abdul Majid 
116.28 -8.76 

 

Groundwater availability can be calculated by the land 

water balance formula, which uses Evapotranspiration and 

Rainfall to obtain APWL (Accumulation of Potential Water 

Lost), groundwater availability, deviation of groundwater 

availability, actual evapotranspiration, and water 

availability. Calculating each parameter requires some 

values, such as the coefficient of the plant, permanent 

wilting point, and field capacity for a particular crop area. 

Those values are different for each type of plant. 

 

Climate Type. Oldeman and Frere [12] have made a climate 

classification related to agriculture using the rainy climate 

parameter. The criteria proposed by Oldeman are based on 

the number of Wet Months and Dry Months. Oldeman [13] 

also defines wet months as months with more than 

200mm/month and dry months as months with less 

than100mm/month, while months with rainfall between 

100mm –200mm are called humid months. 

 

Standardized Precipitation Index  (SPI) is an index that can 

describe drought by calculating the amount of reduction in 

rainfall over a certain time scale. McKee et al. [14] divide 

the SPI calculation time scale into five categories: SPI of 3 
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months, SPI of 6 months, SPI of 12 months, SPI of 24 

months and SPI of 48 months. For the measurement of 

drought, it can use the SPI calculation on a 3-month scale 

[15]. A positive SPI value can indicate wet conditions, 

whereas a negative SPI index indicates dry conditions. SPI 

classification [16] is explained in table 2. 

 

Table 2. SPI Classification 

Value Classification 

> 2.0 Extremely Wet 

1.5 – 1.99 Very Wet 

1.0 – 1.49 Moderately Wet 

-0.99 – 0.99 Near Normal 

-1.0 – (-1.49) Moderately Dry 

-1.5 – (-1.99) Very Dry 

< 2.0 Extremely Dry 

 

After each of the variables' input of the model has 

been obtained (Ground Water Availability, Oldeman 

Climate Type, SPI, Monthly Rainfall, ENSO Index, Dipole 

Mode Index), the model will be built using the Decision 

Tree method. A decision tree is a hierarchical model 

consisting of a discriminant function, or decision rule, that 

is applied recursively to partition the feature space of a 

dataset into pure subspaces with a single class [17]. The 

main components of a decision tree include decision nodes, 

branches, and leaf nodes. In a decision tree structure, each 

decision node represents a feature variable, and each branch 

represents one of the states of these feature variables based 

on a decision rule. Leaf nodes determine the expected value 

of the target variable. 

Decision trees are built recursively by partitioning 

the complete dataset (marked by the root node) into several 

small subsets using a splitting criterion. The goal is to find 

a set of decision rules that naturally partition the feature 

space to provide an informative and robust hierarchical 

classification model. One of the most famous separation 

criteria is the Gini index. The Gini index is calculated using 

the following formulation [18]: 

 

𝐺𝑖𝑛𝑖 (𝑌) = 1 −  ∑[𝑝

𝑖

(𝑌 = 𝑖)]2 

The node splitting criterion based on the Gini index 

aims to obtain the maximum reduction in the impurity of 

the node Y dataset by finding the best partition x* of the 

observations and then dividing the node Y dataset into two 

child node subsets, Yl and Yr, as follows: 

 

𝑚𝑎𝑥∆𝐺𝑖𝑛𝑖(𝑌, 𝑥) 

𝑥 ∈ 𝑋 

∆𝐺𝑖𝑛𝑖(𝑌, 𝑥) = 𝐺𝑖𝑛𝑖 (𝑌) − 𝑝(𝑌𝑙)𝐺𝑖𝑛𝑖(𝑌𝑙) − 𝑝(𝑌𝑟)𝐺𝑖𝑛𝑖(𝑌𝑟) 

 

Where Δgini (Y, x) represents the decrease in 

impurity, x ∈ X refers to the set of divisions generated by 

all features, Yl and Yr are the left and right child nodes of 

the node dataset Y, respectively; and p(Yl) and p(Yr) are 

the proportions of observations in the node Y dataset that 

belong to the left and right child nodes, respectively. 

After the model is formed, it will be divided into 

two subsets: training and testing data. The training data is 

used to build the tree, and the testing data is used to test the 

tree's performance. Apart from that, the model needs to be 

validated to see the performance of the model being built. A 

contingency table is one method for calculating multi-

category parameter model validation. Generally, the 

contingency table is carried out on a binary parameter 

model (figure 1), so the contingency table for multi-

category parameters will still be converted like the 

contingency table for binary parameters (figure 2). Off-

diagonal cells provide information about the error 

prediction. The bias (b) is some category under or over-

predicted, while POD (Probability of Detection) measures 

the success in detecting events of different categories. 

Proportion Correct (P.C.) is calculated to determine the 

number of correct predictions or the level of model 

accuracy, as depicted in Table 3. 

 

 
Figure 1. The contingency table of the binary parameter 

model [19]. 

 

 
Figure 2. The contingency table of the multi-category 

parameter model [19]. 

 

Table 3. Contingency Table Verification Attribute [19] 

Verification Attribute Formula 

Bias(B) (a+b)/(a+c) 

Probability Of Detection (POD) a/(a+c) 

FAR (False Alarm Ratio) b/(a+b) 

F (False Alarm Rate) b/(b+d) 

T.S. (Treat Score) a/(a+b+c) 

 

Another verification attribute is calculating the skill 

model by calculating the Heidke Skill Score (HSS) value. 

HSS is a score that measures the extent of predictability of 

an event by distinguishing between correct cases (actual 

events) and incorrect cases (events that did not occur). This 

helps to measure the extent of predictability better than just 

randomly guessing conditions. HSS scores can be 

generalized to multi-category cases [19]: 

HSS =
{∑ p(fi, oi) − ∑ p(fi)p(oi)}

1 −  ∑ p(fi)p(oi)
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Where p(fi. oi) is the number of correct prediction 

events in all categories compared to the total amount of 

data, p(fi) is the number of predictions in a particular 

category compared to the amount of data, and p(oi) is the 

number of observation events in a particular category 

compared to the amount of data. 

Agricultural data obtained is then converted into 

Risk categories. The agricultural data used is Planted Area 

and Harvested Area, which are available monthly. The 

planting area is the land that will be planted with a 

particular commodity. In contrast, the harvested area is the 

land from which a commodity is ready to be harvested [20]. 

  

Results and Discussion 
 

The risk category for planting failure is determined 

based on the percentage difference between the Planted 

Area and the Harvested Area during the lifetime of each 

commodity. Table 6. Describes an explanation of each 

category of risk of planting failure. 

 

Table 6. Explanation of Risk Category 

Risk Category Explanation 

Safe / No-Risk / 

N.R. 

Historical data on commodity 

planting shows that there are no 

reports of planting failures or the 

percentage difference between 

Planted Area and Harvested Area 

<=0% 

Low Risk / L.R. Historical data on commodity 

planting shows that there are low 

reports of planting failure or the 

percentage difference between 

Planted Area and Harvested Area 

<=33% 

Medium Risk / 

M.R. 

Historical data on commodity 

planting shows that there are reports 

of moderate planting failures or a 

percentage difference between 

Planted Area and Harvested Area of 

33 – 67% 

High Risk  / H.R. Historical data on commodity 

planting shows that there are high 

reports of planting failures or the 

percentage difference between 

Planted Area and Harvested Area 

>=67% 

Not the Right 

Commodity / 

NRC 

Historical data on commodity 

planting shows that there was no 

planting then. 

 

Information is obtained based on the agricultural 

data used, as shown in Table 7. Soybeans are the 

commodity rarely planted, with a percentage during the 

calculation period in 12 regions of about 88.4%, followed 

by maize at 65.5%. Paddy is the main commodity grown 

but has the greatest risk compared to maize and soybeans. 

Approximately 15% of the paddy data samples used are at 

risk of crop failure, of which 8% are at high risk. 

Meanwhile, maize is 4.4%, and soybeans are 7%, which has 

a risk of crop failure. The total paddy crop is generally safe 

or no-risk, as with maize commodities. Meanwhile, the 

percentage of Safe and Risky categories for soybean 

commodities shows a similar value, around 7%. Table 7. 

Shows the distribution of the risk of crop failure for each 

commodity in each category of parameters/attributes used 

in building a climate-based calculation of the potential risk 

of crop failure. 

 

Table 7. Percentage (%) of risk categories for each 

commodity 

Commodity N.R. L.R. MR HR NRC 

Paddy 50.7 4.8 2.1 7.9 34.5 

Maize 32.9 1.4 0.8 2,2 65.5 

Soya bean 7.6 1.0 0.8 5.2 88.4 

 

Figure 1. Shows the weight of the climate parameters used 

in calculating the risk of crop failure using the decision tree 

model. The result shows that monthly rainfall greatly 

determines crop failure risk for paddy, maize, and soybean 

commodities. For paddy commodities, the weight of 

monthly rainfall is almost 0.5 compared to other climate 

parameters. This shows that the diversity or variation of 

monthly rainfall will greatly influence the crop success of 

paddy plants. The lowest weights are generally seen in the 

Oldeman and SPI parameters. 

 
Figure 1. Weight of each Parameter 

 

Monthly Rainfall 

The risk of crop failure due to variations in monthly 

rainfall for each commodity generally shows different 

criteria. There is a risk of crop failure in paddy plants in as 

much as 15% of all the data used; another 35% are not in 

the right conditions for the crop, and 50% are in safe 

conditions. Generally, paddy crops begin when the rainfall 

is>50 mm in 10 days or >150 mm in a month [20] [21]. 

This study consistently found that crop failure risk 

generally occurs when rainfall conditions are less than 150 

mm/month. This is determined based on the percentage of 

data at risk of crop failure in the <150 mm/month category, 

greater than the percentage of total data in the safe 

category. 

In maize plants, there is a risk of crop failure of 5%, 

65% of which are not planted, and 30% are safe. The risk of 

crop failure is generally indicated when rainfall is <50 

mm/month and rain is >150 mm/month. Likewise, for 

soybean plants, the risk of crop failure is 7%; 88% are not 

planted and 5% are safe. This condition shows that crop 

failures in soybean commodities were greater during the 
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study period than those that were not at risk / safe. The risk 

of crop failure is generally indicated when rainfall is <50 

mm/month and rain is >150 mm/month. 

 

Table 8. Distribution of prediction parameters (%) in each paddy risk class category  

Parameter Category 
Paddy (%) Soya bean (%) Maize (%) 

N.R. L.R. 

M

R HR 

NR

C NR LR 

M

R HR NRC NR LR 

M

R HR NRC 

GWA Enough 20.2 2,2 0.2 0.5 8.3 2,4 0.5 0.3 1.3 50.2 9.7 0.3 0.2 1.6 35.5 

Currently 15.7 1.9 0.8 2.5 5.9 4.1 0.5 0.3 2.5 24.5 13.7 0.8 0.2 0.5 14.9 

Not 

enough 14.8 0.6 1.1 4.9 20.3 1.1 0.0 0.2 1.4 13.7 9.5 0.3 0.5 0.2 15.1 

Oldeman 

Climate 

Types 

A 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

B 2,2 1.0 0.0 0.6 4.6 0.3 0.0 0.2 1.3 6,7 2.7 0.5 0.3 0.3 4.6 

C 25.8 1.4 1.3 3.3 9.9 2,2 0.3 0.3 1.4 37.4 9.2 0.2 0.0 0.5 31.8 

D 15.9 2,2 0.6 3.0 19.9 4.8 0.6 0.3 2.5 33.4 14.8 0.8 0.5 1.3 24.3 

E 6,8 0.2 0.2 1.0 0.2 0.3 0.0 0.0 0.0 7.9 5.1 0.0 0.0 0.2 3.0 

SPI Very Dry 1.1 0.0 0.0 0.0 1.4 0.2 0.0 0.0 0.0 2,4 0.8 0.0 0.0 0.0 1.7 

Dry 2.1 0.0 0.2 0.3 0.6 0.2 0.0 0.0 0.2 2.9 1.0 0.2 0.0 0.0 2.1 

A bit  

crunchy 3.5 0.5 0.0 0.3 2.5 1.9 0.2 0.2 0.2 4.5 0.3 0.0 0.3 0.6 5,6 

Normal 35.6 3.7 1.3 7.0 25.9 5.4 0.6 0.6 4.1 64.5 23.5 1.0 0.5 1.7 48.5 

A bit wet 4.3 0.5 0.6 0.2 2.7 0.6 0.2 0.2 0.5 7.9 3,2 0.2 0.2 0.3 5,6 

Wet 3.0 0.2 0.0 0.0 0.6 0.2 0.0 0.0 0.2 3.5 1.7 0.0 0.0 0.0 2.1 

Very wet 1.1 0.0 0.0 0.2 0.6 0.0 0.0 0.0 0.2 1.7 0.5 0.0 0.0 0.0 1.4 

Monthly 

rainfall 
<20 6.2 0.0 1.0 4.5 11.8 3.3 0.3 0.2 1.9 17.6 10.5 0.6 0.5 0.2 11.4 

21 – 50 3.8 0.3 0.5 1.7 5,6 1.3 0.0 0.2 1.6 8.9 6,8 0.2 0.2 0.2 4.6 

51 – 100 4.5 0.5 0.2 0.3 2.9 0.6 0.2 0.2 0.3 7.0 2.7 0.3 0.0 0.3 4.9 

101 – 150 3.7 0.3 0.2 0.5 2.9 0.0 0.0 0.0 0.3 7.2 2.1 0.2 0.2 0.0 5.1 

151 - 200 7.2 1.4 0.2 0.6 2.9 1.0 0.3 0.2 0.2 10.8 3.7 0.2 0.0 0.3 8.3 

201 – 300 12.4 1.4 0.0 0.2 4.8 1.0 0.2 0.2 0.3 17.8 4.1 0.0 0.0 0.5 14.8 

301 – 400 8.3 0.5 0.2 0.0 2.5 0.5 0.0 0.0 0.5 11.4 2.1 0.0 0.0 0.5 9.9 

401 – 500 2.9 0.3 0.0 0.2 1.1 0.0 0.0 0.0 0.2 4.8 0.8 0.0 0.0 0.0 4.1 

>500 1.9 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 2.9 0.2 0.0 0.0 0.3 2.4 

ENSO 

Index 

La-Nina  

Strong 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Moderate  

La Nina 9.9 0.5 0.0 0.2 2.9 1.0 0.3 0.0 0.0 12.1 3,2 0.2 0.0 0.5 9.5 

Weak  

La-Nina 16.2 1.9 0.6 1.9 13.7 1.7 0.2 0.5 1.9 30.0 11.0 0.5 0.2 0.3 22.4 

Normal 11.8 1.1 1.1 4.5 11.0 3.5 0.3 0.2 3.0 25.4 11.9 0.8 0.6 1.3 17.8 

Weak  

El Nino 12.9 1.3 0.3 1.4 7.0 1.4 0.2 0.2 0.3 20.8 6,8 0.0 0.0 0.2 15.7 

Moderate  

El-Nino 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Strong  

El Nino 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

IOD 

Index 
Negative 22.9 2.7 0.5 2.1 16.5 2.7 0.5 0.5 2.9 41.2 11.4 0.6 0.2 2.1 33.4 

Neutral 12.9 0.2 0.8 1.6 11.3 1.9 0.2 0.0 1.3 23.4 9.9 0.3 0.2 0.0 16.2 

Positive 14.9 1.9 0.8 4.3 6,7 3.0 0.3 0.3 1.1 23.8 11.6 0.5 0.5 0.2 15.9 

 

Ground Water Availability / GWA 

Groundwater is vital for communities and 

ecosystems in the semi-arid agro-climatic zone [23]. Crops 

are one of the most impacted creatures by the lack of 

groundwater. The risk of crop failure due to monthly 

groundwater availability for each commodity generally 

shows different criteria. There is a risk of crop failure in 

paddy plants in as much as 14.7% of all the data used; 

another 34.3% are not in the right conditions for a crop, and 

50% are in safe conditions. The risk of crop failure 

generally occurs when the GWA condition is in the 

deficient category. The risk of crop failure in maize plants 

is 4.6%; 65.5% are not planted, and 32.9% are safe. 

Likewise, for soybeans, the percentage risk of crop failure 

is 7%, 88.4% is not planted, and 7.6% is safe. This 

condition shows that the occurrence of crop failures in 

soybean commodities during the study period was lesser 

than that which was not at risk / safe. The risk of crop 

failure is generally indicated when GWA is low to 

moderate [24]. 
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ENSO 

During the data analysis period, ENSO conditions 

only occurred in Moderate La-Nina, Weak La-Nina, 

Normal, and Weak El-Nino. Strong El-Nino results in 

reduced paddy production [25]. The risk of crop failure due 

to the ENSO phenomenon in each commodity generally 

shows different criteria. There is a risk of crop failure in 

paddy plants in as much as 14.8% of all the data used; 

another 34.6% are not in the right conditions for a crop, and 

50.8% are in safe conditions. Both La-Nina and El-Nino 

have the potential to cause paddy crop failure. La Nina can 

trigger extreme rainfall that can cause too much runoff; the 

worst is a flood. El-Nino conditions will increase the 

potential for crop failure because they cause the rainfall to 

decrease significantly. Still, in this study, only 3% of the 

data was found to have a risk of paddy crop failure. The 

risk of crop failure in maize plants is 4.6%; 65.5% are not 

planted, and 32.9% are safe. The risk of crop failure is 

generally indicated when ENSO is in the Weak to Moderate 

La-Nina category. The percentage risk of crop failure in 

soybean plants is 7.1%; 88.3% are not planted, and 7.6% 

are safe. The risk of crop failure is generally indicated when 

ENSO is in the Weak La-Nina category. 

 

IOD 

The IOD phenomenon has an impact on climate 

variability in Indonesia. The IOD phenomenon is divided 

into three categories: Negative IOD, Positive IOD, and 

Neutral IOD. Negative IOD has an impact on increasing 

rainfall, while positive IOD has an impact on reducing 

rainfall in Indonesia. Neutral IOD indicates no influence of 

IOD on climate conditions in Indonesia. The risk of paddy 

crop failure will increase when the IOD is in the positive 

category. As much as 7% of the paddy data used has a risk 

of crop failure. On the other hand, in soybean plants, the 

risk of crop failure will increase when the IOD is in the 

negative category, namely 4% of the total data. Likewise, 

the risk of crop failure in maize plants tends to occur when 

the IOD is in the Negative IOD category. 

 

SPI and Oldeman 

SPI is an index that describes drought conditions in a 

region. Drought generally has an impact on agricultural 

yields, which tend to decrease. During the analysis period, 

the percentage of data in the dry category was 12%. The 

increase in the risk of crop failure when there is a drought, 

is generally shown to be greatest in maize commodities, 

30% of which have a risk of crop failure when the SPI 

Index shows Slightly Dry to Very Dry conditions. 

Meanwhile, paddy and soybean commodities only account 

for around 8%. SPI and Oldeman climate types have the 

smallest weight values in determining the risk of crop 

failure. 

 

Decision Tree Model Validation 

Multi-category validation is applied in assessing the 

performance of the decision tree model, which is used to 

calculate the potential risk of crop failure using a multi-

category contingency table. The contingency table for each 

commodity used can be seen in Tables 9 to 11. The graph 2 

shows the P.C. and HSS values for each commodity used. 

The greater the P.C. value, the higher the model's accuracy, 

and vice versa. HSS shows how well a prediction model is 

in predicting events. Validated data results from split data 

(75% for training and 25% for testing) to build and evaluate 

the model. 

 

Table 9. Contingency Risks of Failure to Paddy Plants  
O. NRC O. L.R. O. N.R. O. H.R. O. MR Precision 

f. NRC 47 1 18 9 1 61.84% 

f. L.R. 0 1 1 0 0 50.00% 

f. N.R. 5 5 61 0 2 83.56% 

f. H.R. 2 0 0 3 0 60.00% 

f. MR 0 0 0 0 0 0.00% 

Precision 87.04% 14.29% 76.25% 25.00% 0.00% 
 

 

Table 10. Contingency Risk of Failure to Maize Crops  
O. NRC O. N.R. O. MR O. L.R. O. H.R. Precision 

f. NRC 83 27 1 2 2 72.17% 

f. N.R. 20 25 0 0 1 54.35% 

f. MR 0 0 0 0 0 0.00% 

f. L.R. 0 0 0 0 0 0.00% 

f. H.R. 0 0 0 0 0 0.00% 

Precision 80.58% 48.08% 0.00% 0.00% 0.00%  

 

Table  11. Contingency Risks of Failure to Soybean Plants  
O. NRC O. N.R. O. H.R. O. MR O. L.R. Precision 

f. NRC 132 11 6 1 1 87.41% 

f. N.R. 5 1 0 0 0 16.67% 

f. H.R. 2 0 2 0 0 20.00% 

f. MR 0 0 0 0 0 0.00% 

f. L.R. 0 0 0 0 0 0.00% 

Precision 94.96% 8.33% 25.00% 0.00% 0.00% 
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The accuracy of the soybean commodity shows the 

highest P.C. value, namely around 81.99%, with an HSS of 

0.192797. Meanwhile, the P.C. value of paddy and maize 

commodities is 71.79% and 74.53%, with HSS of 0.57857 

and -0.0763, respectively. A comparison of each 

commodity's P.C. and HSS values can be seen in graphs 2 

and 3. 

 

Figure 2. Proportion of Correct (P.C.) 

Figure 3. Heidke Skill Score (HSS) 

 

 

 

Table 12. Validation of the Risk of Failure to Plant Paddy 

NRC LR NR HR MR 

BIAS = 1.407 BIAS = 0.286 BIAS = 0.913 BIAS = 0.417 BIAS = 0.000 

POD = 0.870 POD = 0.143 POD = 0.763 POD = 0.250 POD = 0.000 

FAR = 0.382 FAR = 0.500 FAR = 0.164 FAR = 0.400 FAR =       1 

F = 0.284 F = 0.007 F = 0.158 F = 0.014 F = 0.000 

T.S = 0.566 T.S = 0.125 T.S = 0.663 T.S = 0.214 T.S = 0.000 

PC = 0.769 PC = 0.955 PC = 0.801 PC = 0.929 PC = 0.981 

 

Table 13. Validation of the Risk of Failed Maize Crop 

NRC LR NR HR MR 

BIAS = 1.117 BIAS = 0.000 BIAS = 0.885 BIAS = 0.000 BIAS = 0.000 

POD = 0.806 POD = 0.000 POD = 0.481 POD = 0.000 POD = 0.000 

FAR = 0.278 FAR =       1 FAR = 0.457 FAR =       1 FAR =       1 

F = 0.552 F = 0.000 F = 0.202 F = 0.000 F = 0.000 

T.S = 0.615 T.S = 0.000 T.S = 0.342 T.S = 0.000 T.S = 0.000 

 

Table 14. Validation of the Risk of Failure to Plant Soybeans 

NRC LR NR HR MR 

BIAS = 1.022 BIAS = 0.000 BIAS = 0.250 BIAS = 2.000 BIAS = 0.000 

POD = 0.914 POD = 0.000 POD = 0.167 POD = 0.375 POD = 0.000 

FAR = 0.106 FAR =       1 FAR = 0.333 FAR = 0.813 FAR =      1 

F = 0.682 F = 0.000 F = 0.007 F = 0.088 F = 0.000 

T.S = 0.825 T.S = 0.000 T.S = 0.154 T.S = 0.143 T.S = 0.000 

 

Validation is also done by looking at the Bias, 

Probability of Detection (POD), False Alarm (FAR), and 

Treat Score values. The bias Range is from zero to infinity, 

with an unbiased score = 1. With B > 1 (< 1), the 

forecasting system indicates over-forecasting (under-

forecasting) of events. Bias is also known as the Frequency 

Bias Index (FBI). As with continuous variables, bias is not 

a measure of accuracy. The probability of Detection can 

measure the proportion of observed events that are 

predicted correctly. The POD range is zero to one, with a 

perfect score = 1. The opposite attribute of POD is FAR. 

FAR ranges from 0-1, perfect value FAR = 0. A 

performance measure that is widely used for rare events is 

the Treat Score (T.S.). T.S. scores range from 0 – 1, perfect 

score = 1, no skill = 0. Tables 12 to 14 show the validation 

attribute values (BIAS, POD, FAR, T.S.) for Paddy (12), 
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Maize (13), and Soybean (14) commodities in each crop 

failure risk category. 

 

Conclusion 
 

The risk of crop failure does not only occur in areas 

with the Oldeman climate type, which has little rain (D, E) 

but also has the potential to occur in areas with the 

Oldeman climate type, which is quite wet (B, C). This 

shows that climate variability significantly influences the 

occurrence of crop failure in paddy, maize, and soybeans. 

Monthly rainfallfall variations are the most dominant factor 

influencing crop success. Monthly rainfallfall variations can 

be caused by the ENSO and IOD phenomena. Variations in 

monthly rainfall will impact Plant Water Availability 

(KAT) and contribute to meteorological drought. The 

decision tree model is quite good in determining the risk of 

failure to plant paddy plants. In soybean plants, this model 

has not been able to properly determine the risk of crop 

failure, as with maize plants. Even though the accuracy 

value is quite good, the other validation attributes of the 

decision tree model are incapable of determining the risk of 

plant failure in maize and soybean plants. 
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