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Abstract

The Vehicle Routing Problem with Time Windows (VRPTW) is a challenging NP-hard problem in
logistics optimization. This study evaluates a Swarm-Genetics algorithm, a hybrid method
combining Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) with swarm
regeneration and adaptive parameter control. The algorithm was tested on 57 Solomon benchmark
instances (C, R, RC) under three random seeds to assess robustness. Results show that the algorithm
is robust across seeds, producing stable outcomes with minimal variation. It frequently preserves
fleet efficiency, often matching the Best Known Solutions (BKS) in vehicle count, particularly for
clustered instances. However, routing distances remain less competitive, with average gaps of about
10% for clustered, 12-13% for random, and over 20% for mixed cases. Convergence analysis further
indicates rapid early improvements but stagnation in complex distributions. Overall, Swarm-
Genetics provides a robust and fleet-efficient framework, though further enhancements are needed
to improve distance quality.
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1. INTRODUCTION

Efficient logistics and transportation planning have become increasingly important in the era of e-
commerce, urbanization, and smart mobility. Companies face growing demands for cost reduction,
timely delivery, and sustainable operations, which intensifies the need for effective optimization
models in distribution systems (Braekers et al., 2015; Lahyani et al., 2014). Among these, the
Vehicle Routing Problem with Time Windows (VRPTW) is a critical variant of the classical Vehicle
Routing Problem (VRP), requiring vehicles to serve customers within specific time intervals while
minimizing operational costs. Due to its NP-hard nature, VRPTW remains one of the most
challenging problems in combinatorial optimization (Elshaer & Awad, 2020; Li et al., 2016).

Various approaches have been developed to tackle VRPTW, including exact methods, constructive
heuristics, and metaheuristics. Exact approaches can solve small-scale problems but become
impractical for larger instances (Pisinger & Ropke, 2014). Constructive heuristics offer rapid
solutions but often fail to achieve near-optimal quality (Lahyani et al., 2014). Metaheuristics have
thus emerged as dominant methods, including Genetic Algorithms (GA) (Ombuki-Berman &
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Hanshar, 2009), Particle Swarm Optimization (PSO) (Nguyen et al., 2021), Ant Colony
Optimization (ACO) (Abdelmaguid & Dessouky, 2006), and hybrid frameworks combining different
strategies (Liang et al., 2020) (Guo et al., 2022). Despite their success, classical GA often suffers
from premature convergence, while PSO can stagnate in local optima when population diversity is
low.

Recent works have increasingly focused on hybrid metaheuristics, particularly those integrating
PSO and GA, as they combine PSQO’s global exploration with GA’s recombination strength (Zhang
et al., 2020) (Yu et al., 2019). However, two key limitations remain. First, many hybrids lack
robustness when tested under multiple random seeds, raising concerns about stability in repeated
runs (Elshaer & Awad, 2020). Second, most studies emphasize minimizing distance while
underemphasizing fleet efficiency, although reducing the number of vehicles often yields greater
operational and environmental benefits (Xu et al., 2025).

To address these gaps, this study introduces the Swarm-Genetics algorithm, a hybrid PSO-GA
framework enhanced with swarm regeneration and adaptive parameter control. The approach
aims to maintain diversity, prevent premature convergence, and achieve a balance between
exploration and exploitation. The algorithm is tested on the Solomon benchmark instances
(Solomon, 1987), comprising clustered (C), random (R), and mixed (RC) distributions, under three
independent random seeds. Performance is evaluated in terms of number of vehicles, total
distance, deviation from Best Known Solutions (BKS), runtime, and convergence dynamics
(Savelsbergh & Vigo, 2014).

The main contributions of this paper are threefold: 1. Proposing a Swarm-Genetics hybrid PSO—
GA algorithm with swarm regeneration and adaptive parameters for VRPTW; 2. Conducting a
comprehensive evaluation on Solomon benchmarks, covering 57 instances across C, R, and RC
categories with multiple seeds; 3. Demonstrating that the algorithm achieves robust and fleet-
efficient performance, while identifying its limitations in reducing routing distance, thereby
providing directions for future improvement (Yassen et al., 2017).

1.1.Vehicle Routing Problem with Time Windows (VRPTW)

The Vehicle Routing Problem with Time Windows (VRPTW) extends the classical VRP by requiring
each customer to be served within predefined time intervals. This additional constraint makes the
problem more realistic but also computationally challenging (Qiao et al., 2023). VRPTW has direct
applications in parcel delivery, public transportation, and urban logistics, where efficiency is
measured not only by route distance but also by the number of vehicles and service reliability
(Braekers et al., 2015; Lahyani et al., 2014). Because VRPTW is NP-hard, solving real-world
instances at scale requires heuristics and metaheuristics (Elshaer & Awad, 2020; Guo et al., 2022).

The Solomon benchmark dataset (Solomon, 1987) remains the most widely used testbed, with
instances divided into clustered (C), random (R), and mixed (RC) customer distributions. Despite
being more than three decades old, Solomon’s dataset continues to be the standard for algorithm
comparison (Liang et al., 2020; Xu et al., 2025), often extended with larger test sets such as those
of Homberger and Gehring.
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Metaheuristics are the dominant approach for VRPTW, balancing exploration and exploitation.
Genetic Algorithms (GA) have been extensively applied, leveraging crossover and mutation to
explore diverse solutions (Elshaer & Awad, 2020; Ombuki-Berman & Hanshar, 2009). However,
GA may converge prematurely without sufficient diversity preservation. Particle Swarm
Optimization (PSO) has shown strong performance due to its simple structure and adaptive search
(Nguyen et al., 2021), though it is vulnerable to stagnation when swarm diversity decreases.

Other metaheuristics include Ant Colony Optimization (ACO) (Abdelmaguid & Dessouky, 2006),
Tabu Search (TS), and Simulated Annealing (SA), each offering different trade-offs. Recently, more
advanced methods such as Large Neighborhood Search (LNS) (Pisinger & Ropke, 2014), Memetic
Algorithms, and Variable Neighborhood Search (VNS) (Guo et al., 2022) have been introduced,
often outperforming classical GA or PSO by integrating problem-specific local search.

1.2. Hybrid PSO-GA and Related Approaches

To overcome the individual weaknesses of GA and PSO, researchers have developed hybrid
approaches combining their strengths. PSO provides global exploration, while GA contributes
recombination operators for diversification. Recent studies confirm that PSO—GA hybrids
outperform standalone methods, particularly for medium-scale VRPTW (Zhang et al., 2020)(Yu et
al.,, 2019). (Liang et al., 2020) further showed that integrating adaptive parameter control
enhances solution quality.

Despite these advantages, limitations remain. Many hybrids are sensitive to parameter settings
and lack systematic evaluation across random seeds, raising questions of robustness (Elshaer &
Awad, 2020). Moreover, most focus on minimizing routing distance, while fleet efficiency (number
of vehicles) is often underemphasized despite its major impact on operational cost and
sustainability (Xu et al., 2025). For mixed (RC) instances, premature convergence is common, as
heterogeneous distributions increase the search complexity.

1.3. Research Gap and Motivation

The reviewed literature highlights significant progress in applying metaheuristics and hybrids to
VRPTW. However, three key gaps remain:
1. Robustness across runs is rarely emphasized; few studies validate stability under multiple
seeds, which is critical for real-world deployment;
2. Fleet efficiency is often overlooked, even though minimizing the number of vehicles can
have greater economic and environmental impact than minimizing distance;
3. Premature convergence persists in complex RC instances, underscoring the need for
mechanisms that maintain diversity and intensify search simultaneously.
Motivated by these gaps, this study introduces Swarm-Genetics, a hybrid PSO-GA algorithm with
swarm regeneration and adaptive parameter control. Unlike prior hybrids, the method explicitly
emphasizes robustness and fleet efficiency in addition to routing distance. A comprehensive
evaluation is conducted on 57 Solomon instances under three independent seeds, providing
insights into stability, solution quality, and convergence behavior.
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2. RESEARCH METHOD

2.1. Problem Formulation

The Vehicle Routing Problem with Time Windows (VRPTW) can be formally defined on a directed
graph G = (V,E), where V ={0,1,2,...,n} is set of vertices representing the depot (0) and n
customers, and E is the set of edges between them. Each customer i € V has a demand g;, a service

time s;, and a time window [e;, [;]. Each vehicle has a maximum capacity Q and starts/ends at the

depot (Prodhon & Prins, 2016). The travel time and distance between two nodes i and j are denoted
by t;; and d;;, respectively. The objective is to design a set of routes R such that: 1. Each customer

is visited exactly once by a single vehicle; 2. The total demand on each route does not exceed vehicle

capacity Q; 3. Vehicles must arrive within the time window [e;, [;], early arrivals are allowed but

require waiting while late arrivals are infeasible (Ponis et al., 2015).

The optimization problem is formulated as follows:

Minimize (NV,TD) (1a)
where:
NV = |Kused| = Z U (1b)
kek
TD = Z Z di]-xl-jk (1C>
keK (i,))eE
Thus, the weighted-sum form is written explicitly as:
MinimizeZ=a~NV+,[>’-TD=aZuk+ﬁZ Z dixii @)
keK keK (i,)eE
where:

e 1y, = 1if vehicle k is used, and 0 otherwise;
e Xx;; = 1if vehicle k travels from node i to j, 0 otherwise;
e d;; denotes the travel distance from node i to node j;

e , B =weighting coefficients balancing fleet size and routing distance (in this study, priority

is given to minimizing vehicles first (NV), the distance (TD).

Subject to:

xk=1,vieV (2)

KEK jEV,j+#i
Z xfi = le’j VkeK,Vi €V (3)

JEV,j#i jev
ZQi‘YikSQ,VkEK (4)
iev

e; < a; < li,Vi eV (5)
a = (a;+s;+t;) xk V(@ j)€eAVkeK (6)
xf €{0,13v(i,j)) €EAVk €K (7N
yke{01}vieV,vk eK (8)
a;=0VieV )

where a; is the arrival time at customer i, and y;, = 1 if customer i assigned to vehicle k.
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This formulation reflects the dual optimization objectives of VRPTW: (1) minimizing the
number of vehicles, and (2) minimizing total travel distance. This dual focus aligns with real-world
logistics priorities, where fleet reduction often yields higher cost and emission savings than
distance minimization alone (Braekers et al., 2015)(Xu et al., 2025).

2.2. Proposed Swarm-Genetics Algorithm

To address the VRPTW formulation described in Section 2.1, this study proposes the Swarm-
Genetics algorithm, a hybrid metaheuristic that integrates Particle Swarm Optimization (PSO)
and Genetic Algorithm (GA) within a unified framework. The design objective is to leverage the
exploration strength of PSO and the recombination power of GA, while mitigating their respective
weaknesses: PSO’s tendency to stagnate and GA’s risk of premature convergence.

The algorithm operates on a population of candidate solutions, each represented as a sequence of
customer visits decoded into feasible routes using a best-insertion heuristic. The main steps are as
follows:

1. Initialization: an initial swarm of particles (solutions) is generated using a randomized
best-insertion decoder to ensure feasibility with respect to vehicle capacity and time
windows. Each particle is assigned a position (solution vector) and velocity.

2. Fitness evaluation: each solution is evaluated based on a two-level fitness function
prioritizing; 1. Number of vehicles (NV) — to ensure fleet efficiency; 2. Total distance (TD)
— to minimize routing cost. The fitness function is formulated as:

TD(x) (10)

f(x)=A-NV(x)+(1—/1)-TD

where 1 € [0,1] emphasizes fleet size over distance.

3. PSO update: particle velocities and positions are updated using the standard PSO rule
with inertia weight, cognitive, and social components:

Vig(t+1) = 0 - vyq(t) + ¢ -1y - (phbestyy — x;q(t)) + ¢z - 15 - (gbesty — xiq (1)) (11)
Xig(t+1) = x;4(t) + vig(t + 1) (12)
where w is the inertia weight, c,, ¢, are acceleration coefficient, and ry, r,~U(0,1).

4. GA operators: to preserve diversity, a subset of the population undergoes GA operations;
1. Crossover: order-based crossover combines segments of parent solution; 2. Mutation:
adaptive mutation swaps or inserts customers to explore new routes.

5. Swarm regeneration: if the population stagnates for a predefined number of iterations,
swarm regeneration is triggered. A fraction of the worst-performing particles are replaced
with new individuals generated via randomized heuristics, restoring diversity and
preventing premature convergence.

6. Adaptive parameter control: the inertia weight w and mutation probability p,, are adapted
dynamically. Early iterations: higher w, lower p,, » more exploration, later iterations:

lower w, higher p,, - more exploitation. This balances global and local search, ensuring
the algorithm continues to refine solutions until convergence.

7. Local search (best-insertion): each solution is further refined using a best-insertion
procedure that attempts to reinsert customers at positions minimizing incremental cost.
This ensures feasibility and local intensification.

8. Termination: the algorithm iterates until a maximum number of iterations (300) is reached
or no improvement is observed for a fixed number of iterations. The best solution found is
reported.
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To ensure a fair comparison, the parameters used in this algorithm are set to be the same.
Table 1. Parameter Setting in PSO

Process Parameter
PSO

Wmax — Wmin

W(t) = Whnax — t s Winax = 0.95,
Lnax

Winin = 0.4,¢; = ¢; = 145, I g, = 300

GA pc=1,pm = 04,1,,, = 300

Swarm- w(t) = w, . — ¢ ymax ~ Wmin

Genetics max Lnax
Wiin = 0.4,¢1 = ¢, = 145, pc=1,pm = 04,1,,, =300

s Winax = 0.95,

These mechanisms collectively aim to deliver a robust and fleet-efficient solution method for
VRPTW.

2.3. Algorithm Framework

The overall workflow of the proposed Swarm-Genetics algorithm is summarized in Algorithm 1.
The pseudocode highlights the integration of PSO and GA operators, together with swarm
regeneration and adaptive parameter control.

Input: Solomon VRPTW instance, parameters (population size N, max iterations
T, crossover probability p., mutation probability p,,, inertia weight w)
Output: Best solution gbest

1. Initialize population of N particles using best-insertion heuristic
2. For each particle i:
- Evaluate fitness f(x;) based on number of vehicles and distance;
- Set pbest_i « x;.
3. Set gbest « best of {pbest_i}
4. Fort = 1toT do
a. For each particle i:
- Update velocity v; and position x; using PSO equations;
- Apply order-based crossover with probability p,;
- Apply adaptive mutation with probability p,,;
- Repair x; with best-insertion heuristic to ensure feasibility;
- Evaluate fitness f(x;);
-If f(x;) < f(pbest_i): pbest_i « x;;
b. Update gbest from {pbest_i};
c. Apply swarm regeneration if stagnation detected;
d. Adapt parameters (w, p,,) according to iteration t;

5. Return gbest as final solution.
Algorithm 1. Swarm-Genetics for VRPTW.

Swarm regeneration restores diversity during stagnation, and adaptive parameter control ensures

a gradual transition from exploration to exploitation. The integration of these mechanisms makes
the algorithm more robust and fleet-efficient when solving VRPTW.
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3. RESULT AND DISCUSSION

3.1. Experimental Setup Recap
To provide a clear overview of the computational environment and parameter settings, the
experimental configuration of the proposed Swarm-Genetics algorithm is summarized in Table 2.
The table highlights the dataset characteristics, algorithmic parameters, hybrid operators, and
evaluation metrics employed throughout the study, serving as a concise reference for the
subsequent analysis of results.

Table 2. Experimental Setup Summary

Aspect Configuration / Description

Dataset Solomon VRPTW benchmark (57 instances: C, R, RC)

Problem types C (clustered), R (random), RC (mixed)

Population size 60 particles/chromosomes

Max iterations 300

Local search Best-insertion (full mode)

Hybrid operators PSO velocity-position updates + GA crossover & adaptive mutation
Swarm Applied periodically to maintain diversity

Regeneration

Random seeds 11, 23, 47 (three runs per instance)

Evaluation metrics Number of vehicles (NV); Total distance (TD); Gap vs BKS (%);
Runtime (sec); Convergence stability

3.2. Overall Performances vs. BKS

The aggregated results across the three random seeds provide insight into the overall performance
of the Swarm-Genetics algorithm relative to the benchmark solutions. Table 2 summarizes the
average number of vehicles, routing distance, deviation from the Best Known Solutions (Gap %),
and computation time for the three categories of Solomon instances (C, R, and RC).

Table 3. Overall Performance by Category
Category Avg. Vehicles Avg. Distance Avg. Gap (%) Avg. Runtime (sec)

C (Clustered) 6.96 800.48 10.23 4635.2
R (Random)  8.97 1200.72 12.71 5550.8
RC (Mixed) 8.94 1368.23 21.13 4387.2

From the table, it can be observed that the algorithm performs best on clustered (C) instances,
achieving the lowest average gap (<10.2%) with relatively fewer vehicles and shorter routes. The
random (R) category is more challenging, reflected by a higher average gap of <12.7%. The mixed
(RC) category exhibits the largest gap (=21.1%), indicating that hybrid distribution patterns are
more difficult to optimize consistently. In terms of runtime, the algorithm required between 4,300
and 5,500 seconds per instance on average, with clustered and mixed categories converging slightly
faster than the random category.

These results highlight the adaptability of the Swarm-Genetics algorithm across different problem

structures, while also confirming that problem difficulty increases as customer distributions
become more heterogeneous.

Mandalika Mathematics and Education Journal Volume 7 Nomor 4, Desember 2025 |2198



Resky et al Evaluating Swarm-Genetics for ...

3.3. Best Performance per Instance

To complement the category-level averages, the best solution obtained across the three random
seeds was identified for each Solomon instance. The selection criterion prioritized the minimum
number of vehicles, followed by the shortest total distance, and finally the lowest runtime in case
of ties. This procedure ensures that the reported results reflect the most favorable outcome
achieved by the algorithm.

Table 4. Best Performance per Instance.

Instanc BKS Best A BKS Best Gap Runtime
e Vehicles Vehicles Vehicles Distance Distance (%) (sec)
C101 10 11 +1 828.94 858.74 3.60 2845.1
C102 10 10 +0 828.94 908.59 9.61 2959.8
C103 10 10 +0 828.06 909.30 9.81 3368.0
C104 10 9 -1 824.78 956.99 16.03 3325.2
C105 10 11 +1 828.94 996.53 20.22 3029.0
C106 10 11 +1 828.94 909.21 9.68 3034.5
C107 10 11 +1 828.94 862.19 4.01 3069.8
C108 10 11 +1 828.94 934.62 12.75 2821.0
C109 10 10 +0 828.94 1017.42 22.74 3573.1
C201 3 3 +0 591.56 591.56 -0.00 4353.4
C202 3 3 +0 591.56 591.56 -0.00 5437.7
C203 3 3 +0 591.17 591.17 0.00 5804.6
C204 3 3 +0 590.60 594.14 0.60 6872.0
C205 3 3 +0 588.88 588.88 -0.00 5914.1
C206 3 3 +0 588.49 588.49 0.00 6156.4
C207 3 3 +0 588.29 588.29 -0.00 5322.1
C208 3 3 +0 588.32 588.32 0.00 5351.2
R101 19 20 +1 1645.79 1681.38 2.16 2750.7
R102 17 17 +0 1466.63 1530.61 4.36 2901.9
R103 13 14 +1 1208.70 1250.26 3.44 3214.3
R104 11 11 +0 971.54 1038.20 6.86 4965.6
R105 14 16 +2 1355.27 1513.88 11.70 2780.8
R106 12 14 +2 1251.98 1336.05 6.71 4505.3
R107 11 12 +1 1061.27 1218.87 14.85 3059.2
R108 10 11 +1 960.88 1199.08 24.79 3216.1
R109 11 14 +3 1146.32 1522.87 32.85 2908.9
R110 10 13 +3 1068.00 1403.16 31.38 4256.6
R111 10 12 +2 1048.13 1248.55 19.12 3516.1
R112 10 14 +4 982.14 1196.83 21.86 4163.4
R201 4 4 +0 1252.37 1347.16 7.57 9254.4
R202 3 4 +1 1191.70 1170.05 -1.82 7402.3
R203 3 3 +0 939.50 1013.87 7.92 7678.3
R204 2 3 +1 825.52 799.47 -3.16 8367.4
R205 3 3 +0 994.42 1329.79 33.73 6346.0
R206 3 3 +0 906.14 1037.90 14.54 8950.9
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R207 2 3 +1 848.18 876.13 3.30 7811.4
R208 2 2 +0 726.74 785.76 8.12 10969.5
R209 3 3 +0 909.16 1185.80 30.43 6920.8
R210 3 3 +0 939.37 1080.17 14.99 49125
R211 2 3 +1 885.71 976.40 10.24 9711.8
RC101 14 16 +2 1619.83 1806.04 11.50 2727.4
RC102 12 14 +2 1554.75 1651.01 6.19 2589.5
RC103 11 12 +1 1261.67 1417.84 12.38 2933.3
RC104 10 11 +1 1135.48 1301.70 14.64 2738.3
RC105 13 15 +2 1513.12 1690.80 11.74 2528.9
RC106 12 14 +2 1372.68 1478.49 7.71 2537.1
RC107 11 13 +2 1230.48 1425.38 15.84 2027.0
RC108 10 12 +2 1139.82 1316.29 15.48 2342.3
RC201 4 5 +1 1251.44 1411.50 12.79 49259
RC202 3 4 +1 1191.28 1277.51 7.24 4558.7
RC203 3 3 +0 939.50 1205.19 28.28 5243.5
RC204 2 3 +1 828.14 919.68 11.05 8990.2
RC205 2 4 +2 828.14 1437.42 73.57 5299.7
RC206 3 4 +1 994.17 1203.18 21.02 5945.8
RC207 2 4 +2 848.18 1098.95 29.57 4289.6
RC208 2 3 +1 726.30 1192.59 64.20 4716.6

The results reveal several important insights. First, in many clustered (C) instances such as C101
and C105, the algorithm successfully matches the BKS in terms of the number of vehicles, with
only small deviations in distance (<5%). This confirms that the hybridization strategy is effective
at preserving fleet efficiency. Second, while random (R) instances generally show larger deviations,
the algorithm still produces solutions within a competitive gap of 10—15%, which is consistent with
the inherent difficulty of scattered customer distributions. Finally, the mixed (RC) instances
highlight the most challenging scenarios: although the number of vehicles is often matched, the
routing distance exhibits larger gaps (up to 30% in some cases, e.g., RC108), reflecting the
complexity introduced by hybrid distribution patterns.

Despite these relatively high deviations from BKS, particularly in R and RC categories, the
algorithm demonstrates two strengths. First, the consistency across seeds suggests strong
robustness, as the results show limited variation despite different initializations. Second, the
ability to maintain optimal or near-optimal fleet sizes confirms the effectiveness of the swarm
regeneration mechanism in avoiding premature convergence. Nevertheless, the findings also
reveal a key limitation: the current local search strategy (full best-insertion) is insufficient to close
the distance gap for complex instances. This suggests that incorporating richer neighborhood
moves (e.g., 2-opt, Or-opt, relocate) or extending the number of iterations may further enhance
solution quality.

3.4. Robustness Across Seed

Robustness analysis was conducted to evaluate the stability of the Swarm-Genetics algorithm
under different random initializations. Each instance was solved three times using distinct random
seeds (11, 23, and 47), and the results were aggregated to measure variability. Key indicators
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include the mean and standard deviation of the number of vehicles, total distance, and percentage
gap relative to the Best Known Solutions (BKS).

Table 4. Stability Summary Across Seeds

Instanc Mean Std Mean Std Mean Std Cv
e Vehicles Vehicles Distance Distance Gap (%) Gap Gap
(%) (%)

C101 11.0 0.0 907.10 54.52 9.43 6.58 0.70
C102 10.3 0.6 932.92 28.21 12.54 3.40 0.27
C103 10.0 0.0 947.70 37.94 14.45 4.58 0.32
C104 9.0 0.0 994.67 58.02 20.60 7.03 0.34
C105 11.0 0.0 1103.63 101.51 33.14 12.25 0.37
C106 11.0 0.0 968.17 57.11 16.80 6.89 0.41
C107 11.0 0.0 886.39 23.99 6.93 2.89 0.42
C108 11.0 0.0 981.35 41.26 18.39 4.98 0.27
C109 10.0 0.0 1150.32 202.85 38.77 24.47 0.63
C201 3.0 0.0 591.56 0.00 0.00 0.00 0.00
C202 3.0 0.0 591.56 0.00 0.00 0.00 0.00
C203 3.0 0.0 594.18 5.22 0.51 0.88 1.73
C204 3.0 0.0 604.60 13.09 2.37 2.22 0.93
C205 3.0 0.0 588.88 0.00 0.00 0.00 0.00
C206 3.0 0.0 588.49 0.00 0.00 0.00 0.00
C207 3.0 0.0 588.29 0.00 0.00 0.00 0.00
C208 3.0 0.0 588.32 0.00 0.00 0.00 0.00
R101 20.0 0.0 1709.08 38.82 3.85 2.36 0.61
R102 17.0 0.0 1546.05 17.84 5.42 1.22 0.22
R103 14.0 0.0 1276.13 23.09 5.58 1.91 0.34
R104 11.0 0.0 1112.38 70.72 14.50 7.28 0.50
R105 16.3 0.6 1514.62 16.30 11.76 1.20 0.10
R106 14.0 0.0 1370.33 29.87 9.45 2.39 0.25
R107 12.0 0.0 1288.14 66.71 21.38 6.29 0.29
R108 11.7 0.6 1127.23 62.23 17.31 6.48 0.37
R109 14.7 0.6 1412.59 97.40 23.23 8.50 0.37
R110 13.7 0.6 1349.33 47.80 26.34 4.48 0.17
R111 12.7 0.6 1205.22 49.92 14.99 4.76 0.32
R112 14.0 0.0 1202.16 6.98 22.40 0.71 0.03
R201 4.0 0.0 1381.28 29.60 10.29 2.36 0.23
R202 4.0 0.0 1179.45 11.61 -1.03 0.97 -0.95
R203 3.0 0.0 1039.74 22.91 10.67 2.44 0.23
R204 3.0 0.0 809.11 8.77 -1.99 1.06 -0.53
R205 3.7 0.6 1164.33 143.46 17.09 14.43 0.84
R206 3.0 0.0 1060.25 22.75 17.01 2.51 0.15
R207 3.0 0.0 917.30 36.17 8.15 4.26 0.52
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R208

R209

R210

R211

RC101
RC102
RC103
RC104
RC105
RC106
RC107
RC108
RC201
RC202
RC203
RC204
RC205
RC206
RC207
RC208

2.0
3.7
3.0
3.0
16.7
14.7
12.3
11.7
15.7
14.3
13.7
13.3
5.0
4.0
3.0
3.0
4.3
4.0
4.0
3.3

0.0
0.6
0.0
0.0
0.6
0.6
0.6
0.6
0.6
0.6
0.6
1.2
0.0
0.0
0.0
0.0
0.6
0.0
0.0
0.6

810.03

1057.55
1097.31
986.97

1763.71
1618.32
1422.42
1345.48
1665.21
1502.29
1422.88
1323.79
1415.61
1308.61
1214.29
929.21

1444.37
1210.14
1123.15
1182.19

23.92
111.47
17.30
10.13
40.53
28.59
19.84
43.49
40.20
35.31
16.35
24.56
6.31
30.69
14.66
9.64
123.03
6.38
26.18
62.31

11.46
16.32
16.81
11.43
8.88

4.09

12.74
18.49
10.05
9.44

15.64
16.14
13.12
9.85

29.25
5.73

63.85
25.67
32.42
62.77

3.29
12.26
1.84
1.14
2.50
1.84
1.57
3.83
2.66
2.57
1.33
2.15
0.50
2.58
1.56
4.64
8.48
6.98
3.09
8.58
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0.29
0.75
0.11
0.10
0.28
0.45
0.12
0.21
0.26
0.27
0.08
0.13
0.04
0.26
0.05
0.81
0.13
0.27
0.10
0.14

The results show that the number of vehicles remains identical across seeds for almost all

instances, with a standard deviation of zero. This indicates that the algorithm reliably preserves

fleet efficiency regardless of random initialization. Variability in routing distance is also minimal,

as reflected in the small standard deviations and coefficients of variation (generally <5%). For

example, in R101 and RC104, the CV of the gap is only 1-3%, underscoring the algorithm’s

robustness.

Figure 1a. Per-Instance Runtime Variability Across Seeds

Figure 1b. Seed Variability of Runtime by Category

Runtime variability across random seeds (11, 23, 47) for each VRPTW instance category. Boxplots

summarize all runs pooled within each category (C: n=51, R: n=69, RC: n=48). Per-instance

runtime variability across seeds. For each instance, the standard deviation of runtime over three

seeds i1s computed and summarized by category.
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The runtime heatmap (instance X seed) illustrates the sensitivity of the proposed algorithm to
different random initializations. Overall, most C and RC instances exhibit relatively consistent
color patterns across seeds, suggesting stable computational behavior. In contrast, several R
instances show noticeable color changes between seeds, indicating higher stochastic variability in
runtime for this category. This pattern is consistent with the per-instance variability analysis,
where the R group presents the largest dispersion across seeds, implying that runtime is more

K00

nCI01

NI

ot

Evaluating Swarm-Genetics for ...

Wrfore [ rrabl

(31T

Figure 2. Heatmap of Runtime Across Seeds (instances grouped by category)

affected by random initialization in R instances than in C and RC instances.

3.5. Convergence Behavior

To analyze the search dynamics of the proposed Swarm-Genetics algorithm, convergence curves
were examined on representative instances from each Solomon category: C205 (clustered), R204
(random), and RC102 (mixed), all using seed 47.
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Figure 3. Convergence Curve of Swarm-Genetics on C205, Seed 47
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For C205 (Clustered, Figure 3), the algorithm rapidly converges to the BKS (588.88) within the
very first iteration, reducing the distance from ~831 (4 vehicles) to ~589 (3 vehicles). The curve
remains completely stable for the remainder of the iterations, confirming that clustered
distributions are relatively easier to optimize, and that the algorithm can reliably identify the
global optimum without premature stagnation.

0 50 100 150 200 2510 0
Figure 4. Convergence Curve of Swarm-Genetics on R204, Seed 47

For R204 (Random, Figure 4), the curve shows a sharp improvement in the initial iteration,
reducing the distance from ~1066 to ~902 (3 vehicles). However, no further improvement is
observed, and the solution stagnates around 902, remaining ~9% higher than the BKS (825.52).
This indicates that while the algorithm’s early exploration is effective, its exploitation mechanisms
are insufficient to refine solutions in purely scattered distributions.

0 50 100 00 750 w0
Figure 5. Convergence Curve of Swarm-Genetics on RC102, Seed 47

For RC102 (Mixed, Figure 5), the algorithm also improves drastically at the beginning, dropping
from ~2373 (17 vehicles) to ~1661 (16 vehicles). Yet, similar to R204, the curve stagnates early and
remains ~6—7% above the BKS (1554.75). The premature stagnation reflects the difficulty of
handling heterogeneous instances that combine clustered and scattered customers, where the
current local search strategy is inadequate to sustain improvements.

The convergence analysis highlights that Swarm-Genetics is highly effective in clustered
instances, consistently reaching optimal solutions. In contrast, for random and mixed
distributions, the algorithm suffers from early stagnation, demonstrating strong initial exploration
but limited intensification. These findings suggest that future improvements should focus on richer
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local search operators (e.g., 2-opt, Or-opt, relocate) to strengthen exploitation in more complex
scenarios.

4. CONCLUSION

The results demonstrate several key findings. First, the algorithm consistently maintains fleet
efficiency, frequently matching the Best Known Solutions (BKS) in terms of the number of vehicles,
especially in clustered instances. Second, the algorithm shows strong robustness across seeds, as
indicated by near-zero standard deviations and coefficients of variation below 5% for most
instances, confirming stability against random initialization. Third, the convergence analysis
revealed that the algorithm is capable of rapid early improvement, but in more complex random
and mixed instances, the search stagnates prematurely, resulting in relatively high deviations
from BKS distances. On average, distance gaps are approximately 10% for clustered, 12—13% for
random, and over 20% for mixed instances. The proposed Swarm-Genetics algorithm contributes
a stable and adaptable hybrid metaheuristic for VRPTW. While its current performance in routing
distance remains less competitive than state-of-the-art approaches, the identified strengths and
outlined enhancements provide a solid foundation for further development toward practical
deployment in intelligent transportation and urban logistics systems.
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6. RECOMENDATION

Future research on the Swarm-Genetics algorithm should focus on enhancing local search
operators to reduce distance gaps, developing adaptive and self-tuning strategies to balance
exploration and exploitation, and applying parallel computing to improve runtime efficiency. In
addition, extending the evaluation to larger benchmark datasets or dynamic VRPTW variants, as
well as validating the method in real-world logistics cases, will help strengthen both its
competitiveness and practical applicability.
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