
Mandalika Mathematics and Education Journal  
Volume 7 Nomor 4, Desember 2025 

 e-ISSN 2715-1190||p-ISSN 2715-8292 

DOI: http://dx.doi.org/10.29303/jm.v3i1.10213 

 

 

 
 

Mandalika Mathematics and Education Journal Volume 7 Nomor 4, Desember 2025 

 

|2192 

 

Evaluating Swarm-Genetics for VRPTW: Robustness 

Across Seeds and Fleet Efficiency on Solomon 

Benchmarks       
 

Aprizal Resky1*, Zaitun2, Dhirga Tandi Teppa1  

1,3 Data Science, Department of Science, Institut Teknologi Bacharuddin Jusuf Habibie, Parepare 
2 Mathematics, Department of Science, Institut Teknologi Bacharuddin Jusuf Habibie, Parepare 

 

aprizalresky@ith.ac.id 

 

 
Abstract  

The Vehicle Routing Problem with Time Windows (VRPTW) is a challenging NP-hard problem in 

logistics optimization. This study evaluates a Swarm-Genetics algorithm, a hybrid method 

combining Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) with swarm 

regeneration and adaptive parameter control. The algorithm was tested on 57 Solomon benchmark 

instances (C, R, RC) under three random seeds to assess robustness. Results show that the algorithm 

is robust across seeds, producing stable outcomes with minimal variation. It frequently preserves 

fleet efficiency, often matching the Best Known Solutions (BKS) in vehicle count, particularly for 

clustered instances. However, routing distances remain less competitive, with average gaps of about 

10% for clustered, 12–13% for random, and over 20% for mixed cases. Convergence analysis further 

indicates rapid early improvements but stagnation in complex distributions. Overall, Swarm-

Genetics provides a robust and fleet-efficient framework, though further enhancements are needed 

to improve distance quality. 
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1. INTRODUCTION 

Efficient logistics and transportation planning have become increasingly important in the era of e-

commerce, urbanization, and smart mobility. Companies face growing demands for cost reduction, 

timely delivery, and sustainable operations, which intensifies the need for effective optimization 

models in distribution systems (Braekers et al., 2015; Lahyani et al., 2014). Among these, the 

Vehicle Routing Problem with Time Windows (VRPTW) is a critical variant of the classical Vehicle 

Routing Problem (VRP), requiring vehicles to serve customers within specific time intervals while 

minimizing operational costs. Due to its NP-hard nature, VRPTW remains one of the most 

challenging problems in combinatorial optimization (Elshaer & Awad, 2020; Li et al., 2016). 

Various approaches have been developed to tackle VRPTW, including exact methods, constructive 

heuristics, and metaheuristics. Exact approaches can solve small-scale problems but become 

impractical for larger instances (Pisinger & Ropke, 2014). Constructive heuristics offer rapid 

solutions but often fail to achieve near-optimal quality (Lahyani et al., 2014). Metaheuristics have 

thus emerged as dominant methods, including Genetic Algorithms (GA) (Ombuki-Berman & 
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Hanshar, 2009), Particle Swarm Optimization (PSO) (Nguyen et al., 2021), Ant Colony 

Optimization (ACO) (Abdelmaguid & Dessouky, 2006), and hybrid frameworks combining different 

strategies (Liang et al., 2020) (Guo et al., 2022). Despite their success, classical GA often suffers 

from premature convergence, while PSO can stagnate in local optima when population diversity is 

low.   

Recent works have increasingly focused on hybrid metaheuristics, particularly those integrating 

PSO and GA, as they combine PSO’s global exploration with GA’s recombination strength (Zhang 

et al., 2020) (Yu et al., 2019). However, two key limitations remain. First, many hybrids lack 

robustness when tested under multiple random seeds, raising concerns about stability in repeated 

runs (Elshaer & Awad, 2020). Second, most studies emphasize minimizing distance while 

underemphasizing fleet efficiency, although reducing the number of vehicles often yields greater 

operational and environmental benefits (Xu et al., 2025).  

To address these gaps, this study introduces the Swarm-Genetics algorithm, a hybrid PSO–GA 

framework enhanced with swarm regeneration and adaptive parameter control. The approach 

aims to maintain diversity, prevent premature convergence, and achieve a balance between 

exploration and exploitation. The algorithm is tested on the Solomon benchmark instances 

(Solomon, 1987), comprising clustered (C), random (R), and mixed (RC) distributions, under three 

independent random seeds. Performance is evaluated in terms of number of vehicles, total 

distance, deviation from Best Known Solutions (BKS), runtime, and convergence dynamics 

(Savelsbergh & Vigo, 2014).   

The main contributions of this paper are threefold: 1. Proposing a Swarm-Genetics hybrid PSO–

GA algorithm with swarm regeneration and adaptive parameters for VRPTW; 2. Conducting a 

comprehensive evaluation on Solomon benchmarks, covering 57 instances across C, R, and RC 

categories with multiple seeds; 3. Demonstrating that the algorithm achieves robust and fleet-

efficient performance, while identifying its limitations in reducing routing distance, thereby 

providing directions for future improvement (Yassen et al., 2017). 

1.1. Vehicle Routing Problem with Time Windows (VRPTW) 

The Vehicle Routing Problem with Time Windows (VRPTW) extends the classical VRP by requiring 

each customer to be served within predefined time intervals. This additional constraint makes the 

problem more realistic but also computationally challenging (Qiao et al., 2023). VRPTW has direct 

applications in parcel delivery, public transportation, and urban logistics, where efficiency is 

measured not only by route distance but also by the number of vehicles and service reliability 

(Braekers et al., 2015; Lahyani et al., 2014). Because VRPTW is NP-hard, solving real-world 

instances at scale requires heuristics and metaheuristics (Elshaer & Awad, 2020; Guo et al., 2022). 

The Solomon benchmark dataset (Solomon, 1987) remains the most widely used testbed, with 

instances divided into clustered (C), random (R), and mixed (RC) customer distributions. Despite 

being more than three decades old, Solomon’s dataset continues to be the standard for algorithm 

comparison (Liang et al., 2020; Xu et al., 2025), often extended with larger test sets such as those 

of Homberger and Gehring. 
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Metaheuristics are the dominant approach for VRPTW, balancing exploration and exploitation. 

Genetic Algorithms (GA) have been extensively applied, leveraging crossover and mutation to 

explore diverse solutions (Elshaer & Awad, 2020; Ombuki-Berman & Hanshar, 2009). However, 

GA may converge prematurely without sufficient diversity preservation. Particle Swarm 

Optimization (PSO) has shown strong performance due to its simple structure and adaptive search 

(Nguyen et al., 2021), though it is vulnerable to stagnation when swarm diversity decreases. 

Other metaheuristics include Ant Colony Optimization (ACO) (Abdelmaguid & Dessouky, 2006), 

Tabu Search (TS), and Simulated Annealing (SA), each offering different trade-offs. Recently, more 

advanced methods such as Large Neighborhood Search (LNS) (Pisinger & Ropke, 2014), Memetic 

Algorithms, and Variable Neighborhood Search (VNS) (Guo et al., 2022) have been introduced, 

often outperforming classical GA or PSO by integrating problem-specific local search. 

1.2.  Hybrid PSO-GA and Related Approaches 

To overcome the individual weaknesses of GA and PSO, researchers have developed hybrid 

approaches combining their strengths. PSO provides global exploration, while GA contributes 

recombination operators for diversification. Recent studies confirm that PSO–GA hybrids 

outperform standalone methods, particularly for medium-scale VRPTW (Zhang et al., 2020)(Yu et 

al., 2019). (Liang et al., 2020) further showed that integrating adaptive parameter control 

enhances solution quality. 

Despite these advantages, limitations remain. Many hybrids are sensitive to parameter settings 

and lack systematic evaluation across random seeds, raising questions of robustness (Elshaer & 

Awad, 2020). Moreover, most focus on minimizing routing distance, while fleet efficiency (number 

of vehicles) is often underemphasized despite its major impact on operational cost and 

sustainability (Xu et al., 2025). For mixed (RC) instances, premature convergence is common, as 

heterogeneous distributions increase the search complexity. 

1.3.  Research Gap and Motivation 

The reviewed literature highlights significant progress in applying metaheuristics and hybrids to 

VRPTW. However, three key gaps remain:  

1. Robustness across runs is rarely emphasized; few studies validate stability under multiple 

seeds, which is critical for real-world deployment; 

2. Fleet efficiency is often overlooked, even though minimizing the number of vehicles can 

have greater economic and environmental impact than minimizing distance; 

3. Premature convergence persists in complex RC instances, underscoring the need for 

mechanisms that maintain diversity and intensify search simultaneously. 

Motivated by these gaps, this study introduces Swarm-Genetics, a hybrid PSO–GA algorithm with 

swarm regeneration and adaptive parameter control. Unlike prior hybrids, the method explicitly 

emphasizes robustness and fleet efficiency in addition to routing distance. A comprehensive 

evaluation is conducted on 57 Solomon instances under three independent seeds, providing 

insights into stability, solution quality, and convergence behavior. 
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2.  RESEARCH METHOD  

2.1. Problem Formulation 

The Vehicle Routing Problem with Time Windows (VRPTW) can be formally defined on a directed 

graph 𝐺 = (𝑉, 𝐸), where 𝑉 = {0,1,2, … , 𝑛} is set of vertices representing the depot (0) and 𝑛 

customers, and 𝐸 is the set of edges between them. Each customer 𝑖 ∈ 𝑉 has a demand 𝑞𝑖, a service 

time 𝑠𝑖, and a time window [𝑒𝑖, 𝑙𝑖]. Each vehicle has a maximum capacity 𝑄 and starts/ends at the 

depot (Prodhon & Prins, 2016). The travel time and distance between two nodes 𝑖 and 𝑗 are denoted 

by 𝑡𝑖𝑗 and 𝑑𝑖𝑗, respectively. The objective is to design a set of routes 𝑅 such that: 1. Each customer 

is visited exactly once by a single vehicle; 2. The total demand on each route does not exceed vehicle 

capacity 𝑄; 3. Vehicles must arrive within the time window [𝑒𝑖, 𝑙𝑖], early arrivals are allowed but 

require waiting while late arrivals are infeasible (Ponis et al., 2015). 

The optimization problem is formulated as follows: 

Minimize (𝑁𝑉, 𝑇𝐷) (1a) 

where:  

𝑁𝑉 = |𝐾𝑢𝑠𝑒𝑑| = ∑ 𝑢𝑘

𝑘∈𝐾

 (1b) 

𝑇𝐷 = ∑ ∑ 𝑑𝑖𝑗𝑥𝑖𝑗𝑘

(𝑖,𝑗)∈𝐸𝑘∈𝐾

 (1c) 

Thus, the weighted-sum form is written explicitly as:  

Minimize 𝑍 = 𝛼 ⋅ 𝑁𝑉 + 𝛽 ⋅ 𝑇𝐷 = 𝛼 ∑ 𝑢𝑘

𝑘∈𝐾

+ 𝛽 ∑ ∑ 𝑑𝑖𝑗𝑥𝑖𝑗𝑘

(𝑖,𝑗)∈𝐸𝑘∈𝐾

 (1) 

  where: 

● 𝑢𝑘 = 1 if vehicle 𝑘 is used, and 0 otherwise; 

●  𝑥𝑖𝑗𝑘 = 1 if vehicle 𝑘 travels from node 𝑖 to 𝑗, 0 otherwise; 

● 𝑑𝑖𝑗 denotes the travel distance from node 𝑖 to node 𝑗; 

● 𝛼, 𝛽 = weighting coefficients balancing fleet size and routing distance (in this study, priority 

is given to minimizing vehicles first (NV), the distance (TD). 

 

Subject to: 

∑ ∑ 𝑥𝑖𝑗
𝑘 = 1 

𝑗∈𝑉,𝑗≠𝑖

, ∀𝑖 ∈ 𝑉

𝑘∈𝐾

 (2) 

∑ 𝑥𝑗𝑖
𝑘 = ∑ 𝑥𝑖𝑗

𝑘      ∀𝑘𝜖𝐾, ∀𝑖 ∈ 𝑉

𝑗∈𝑉𝑗∈𝑉,𝑗≠𝑖

 (3) 

∑ 𝑞𝑖 ⋅ 𝑦𝑖𝑘 ≤ 𝑄, ∀𝑘 ∈ 𝐾

𝑖∈𝑉

 (4) 

𝑒𝑖 ≤ 𝑎𝑖 ≤ 𝑙𝑖, ∀𝑖 ∈ 𝑉 (5) 

𝑎𝑗 ≥ (𝑎𝑖 + 𝑠𝑖 + 𝑡𝑖𝑗) ∙ 𝑥𝑖𝑗
𝑘       ∀(𝑖, 𝑗) ∈ 𝐴, ∀𝑘 ∈ 𝐾 (6) 

𝑥𝑖𝑗
𝑘 ∈ {0,1} ∀(𝑖, 𝑗) ∈ 𝐴, ∀𝑘 ∈ 𝐾 (7) 

𝑦𝑖
𝑘 ∈ {0,1}∀𝑖 ∈ 𝑉, ∀𝑘 ∈ 𝐾 (8) 

𝑎𝑖 ≥ 0 ∀𝑖 ∈ 𝑉 (9) 
where 𝑎𝑖 is the arrival time at customer 𝑖, and 𝑦𝑖𝑘 = 1 if customer 𝑖 assigned to vehicle 𝑘. 
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 This formulation reflects the dual optimization objectives of VRPTW: (1) minimizing the 

number of vehicles, and (2) minimizing total travel distance. This dual focus aligns with real-world 

logistics priorities, where fleet reduction often yields higher cost and emission savings than 

distance minimization alone (Braekers et al., 2015)(Xu et al., 2025). 

2.2. Proposed Swarm-Genetics Algorithm 

To address the VRPTW formulation described in Section 2.1, this study proposes the Swarm-

Genetics algorithm, a hybrid metaheuristic that integrates Particle Swarm Optimization (PSO) 

and Genetic Algorithm (GA) within a unified framework. The design objective is to leverage the 

exploration strength of PSO and the recombination power of GA, while mitigating their respective 

weaknesses: PSO’s tendency to stagnate and GA’s risk of premature convergence.  

The algorithm operates on a population of candidate solutions, each represented as a sequence of 

customer visits decoded into feasible routes using a best-insertion heuristic. The main steps are as 

follows: 

1. Initialization: an initial swarm of particles (solutions) is generated using a randomized 

best-insertion decoder to ensure feasibility with respect to vehicle capacity and time 

windows. Each particle is assigned a position (solution vector) and velocity. 

2. Fitness evaluation: each solution is evaluated based on a two-level fitness function 

prioritizing; 1. Number of vehicles (NV) – to ensure fleet efficiency; 2. Total distance (TD) 

– to minimize routing cost. The fitness function is formulated as: 

𝑓(𝑥) = 𝜆 ⋅ 𝑁𝑉(𝑥) + (1 − 𝜆) ∙
𝑇𝐷(𝑥)

𝑇𝐷𝑚𝑎𝑥
 

(10) 

where 𝜆 ∈ [0,1] emphasizes fleet size over distance. 

3. PSO update: particle velocities and positions are updated using the standard PSO rule 

with inertia weight, cognitive, and social components: 

𝑣𝑖𝑑(𝑡 + 1) = 𝜔 ⋅ 𝑣𝑖𝑑(𝑡) + 𝑐1 ⋅ 𝑟1 ⋅ (𝑝𝑏𝑒𝑠𝑡𝑖𝑑 − 𝑥𝑖𝑑(𝑡)) + 𝑐2 ⋅ 𝑟2 ⋅ (𝑔𝑏𝑒𝑠𝑡𝑑 − 𝑥𝑖𝑑(𝑡)) (11) 

𝑥𝑖𝑑(𝑡 + 1) = 𝑥𝑖𝑑(𝑡) + 𝑣𝑖𝑑(𝑡 + 1) (12) 

where 𝜔 is the inertia weight, 𝑐1, 𝑐2 are acceleration coefficient, and 𝑟1, 𝑟2~𝑈(0,1). 

4. GA operators: to preserve diversity, a subset of the population undergoes GA operations; 

1. Crossover: order-based crossover combines segments of parent solution; 2. Mutation: 

adaptive mutation swaps or inserts customers to explore new routes. 

5. Swarm regeneration: if the population stagnates for a predefined number of iterations, 

swarm regeneration is triggered. A fraction of the worst-performing particles are replaced 

with new individuals generated via randomized heuristics, restoring diversity and 

preventing premature convergence. 

6. Adaptive parameter control: the inertia weight 𝜔 and mutation probability 𝑝𝑚  are adapted 

dynamically. Early iterations: higher 𝜔, lower 𝑝𝑚 → 𝑚𝑜𝑟𝑒 𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛, later iterations: 

lower 𝜔, higher 𝑝𝑚 → 𝑚𝑜𝑟𝑒 𝑒𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛. This balances global and local search, ensuring 

the algorithm continues to refine solutions until convergence. 

7. Local search (best-insertion): each solution is further refined using a best-insertion 

procedure that attempts to reinsert customers at positions minimizing incremental cost. 

This ensures feasibility and local intensification. 

8. Termination: the algorithm iterates until a maximum number of iterations (300) is reached 

or no improvement is observed for a fixed number of iterations. The best solution found is 

reported. 



 

Resky et al Evaluating Swarm-Genetics for … 

 

 

 
 

Mandalika Mathematics and Education Journal Volume 7 Nomor 4, Desember 2025 

 

|2197 

 

To ensure a fair comparison, the parameters used in this algorithm are set to be the same.  

Table 1. Parameter Setting in PSO 

Process Parameter 

PSO 𝑤(𝑡) = 𝑤𝑚𝑎𝑥 − 𝑡
𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛

𝐼𝑚𝑎𝑥
, 𝑤𝑚𝑎𝑥 = 0.95,  

𝑤𝑚𝑖𝑛 = 0.4, 𝑐1 = 𝑐2 = 1.45, 𝐼𝑚𝑎𝑥 = 300 

GA 𝑝𝑐 = 1, 𝑝𝑚 = 0.4, 𝐼𝑚𝑎𝑥 = 300 

Swarm-

Genetics 
𝑤(𝑡) = 𝑤𝑚𝑎𝑥 − 𝑡

𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛

𝐼𝑚𝑎𝑥
, 𝑤𝑚𝑎𝑥 = 0.95,  

𝑤𝑚𝑖𝑛 = 0.4, 𝑐1 = 𝑐2 = 1.45, 𝑝𝑐 = 1, 𝑝𝑚 = 0.4, 𝐼𝑚𝑎𝑥 = 300 

These mechanisms collectively aim to deliver a robust and fleet-efficient solution method for 

VRPTW. 

2.3. Algorithm Framework 

The overall workflow of the proposed Swarm-Genetics algorithm is summarized in Algorithm 1. 

The pseudocode highlights the integration of PSO and GA operators, together with swarm 

regeneration and adaptive parameter control.  

Input: Solomon VRPTW instance, parameters (population size 𝑁, max iterations 

𝑇, crossover probability 𝑝𝑐, mutation probability 𝑝𝑚, inertia weight 𝜔) 

Output: Best solution gbest 

 

1. Initialize population of 𝑁 particles using best-insertion heuristic 

2. For each particle 𝑖: 

      - Evaluate fitness 𝑓(𝑥𝑖) based on number of vehicles and distance; 

      - Set 𝑝𝑏𝑒𝑠𝑡_𝑖 ←  𝑥𝑖. 

3. Set 𝑔𝑏𝑒𝑠𝑡 ←  𝑏𝑒𝑠𝑡 𝑜𝑓 {𝑝𝑏𝑒𝑠𝑡_𝑖} 

4. For 𝑡 =  1 to 𝑇 do 

      a. For each particle 𝑖: 

            - Update velocity 𝑣𝑖 and position 𝑥𝑖 using PSO equations; 

            - Apply order-based crossover with probability 𝑝𝑐; 

            - Apply adaptive mutation with probability 𝑝𝑚; 

            - Repair 𝑥𝑖 with best-insertion heuristic to ensure feasibility; 

            - Evaluate fitness 𝑓(𝑥𝑖); 

            - If 𝑓(𝑥𝑖)  <  𝑓(𝑝𝑏𝑒𝑠𝑡_𝑖): 𝑝𝑏𝑒𝑠𝑡_𝑖 ← 𝑥𝑖; 

      b. Update gbest from {𝑝𝑏𝑒𝑠𝑡_𝑖}; 

      c. Apply swarm regeneration if stagnation detected; 

      d. Adapt parameters (𝜔, 𝑝𝑚) according to iteration 𝑡; 

5. Return gbest as final solution. 

Algorithm 1. Swarm-Genetics for VRPTW. 

Swarm regeneration restores diversity during stagnation, and adaptive parameter control ensures 

a gradual transition from exploration to exploitation. The integration of these mechanisms makes 

the algorithm more robust and fleet-efficient when solving VRPTW.  
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3.  RESULT AND DISCUSSION 

3.1. Experimental Setup Recap 

To provide a clear overview of the computational environment and parameter settings, the 

experimental configuration of the proposed Swarm-Genetics algorithm is summarized in Table 2. 

The table highlights the dataset characteristics, algorithmic parameters, hybrid operators, and 

evaluation metrics employed throughout the study, serving as a concise reference for the 

subsequent analysis of results.  

Table 2. Experimental Setup Summary 

Aspect Configuration / Description 

Dataset Solomon VRPTW benchmark (57 instances: C, R, RC) 

Problem types C (clustered), R (random), RC (mixed) 

Population size 60 particles/chromosomes 

Max iterations 300 

Local search Best-insertion (full mode) 

Hybrid operators PSO velocity-position updates + GA crossover & adaptive mutation 

Swarm 

Regeneration 

Applied periodically to maintain diversity 

Random seeds 11, 23, 47 (three runs per instance) 

Evaluation metrics Number of vehicles (NV); Total distance (TD); Gap vs BKS (%); 

Runtime (sec); Convergence stability 

3.2. Overall Performances vs. BKS 

The aggregated results across the three random seeds provide insight into the overall performance 

of the Swarm-Genetics algorithm relative to the benchmark solutions. Table 2 summarizes the 

average number of vehicles, routing distance, deviation from the Best Known Solutions (Gap %), 

and computation time for the three categories of Solomon instances (C, R, and RC). 

Table 3. Overall Performance by Category 

Category Avg. Vehicles Avg. Distance Avg. Gap (%) Avg. Runtime (sec) 

C (Clustered) 6.96 800.48 10.23 4635.2 

R (Random) 8.97 1200.72 12.71 5550.8 

RC (Mixed) 8.94 1368.23 21.13 4387.2 

From the table, it can be observed that the algorithm performs best on clustered (C) instances, 

achieving the lowest average gap (≈10.2%) with relatively fewer vehicles and shorter routes. The 

random (R) category is more challenging, reflected by a higher average gap of ≈12.7%. The mixed 

(RC) category exhibits the largest gap (≈21.1%), indicating that hybrid distribution patterns are 

more difficult to optimize consistently. In terms of runtime, the algorithm required between 4,300 

and 5,500 seconds per instance on average, with clustered and mixed categories converging slightly 

faster than the random category.  

These results highlight the adaptability of the Swarm-Genetics algorithm across different problem 

structures, while also confirming that problem difficulty increases as customer distributions 

become more heterogeneous. 
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3.3. Best Performance per Instance 

To complement the category-level averages, the best solution obtained across the three random 

seeds was identified for each Solomon instance. The selection criterion prioritized the minimum 

number of vehicles, followed by the shortest total distance, and finally the lowest runtime in case 

of ties. This procedure ensures that the reported results reflect the most favorable outcome 

achieved by the algorithm. 

Table 4. Best Performance per Instance. 

Instanc

e 

BKS 

Vehicles 

Best 

Vehicles 

Δ 

Vehicles 

BKS 

Distance 

Best 

Distance 

Gap 

(%) 

Runtime 

(sec) 

C101 10 11 +1 828.94 858.74 3.60 2845.1 

C102 10 10 +0 828.94 908.59 9.61 2959.8 

C103 10 10 +0 828.06 909.30 9.81 3368.0 

C104 10 9 -1 824.78 956.99 16.03 3325.2 

C105 10 11 +1 828.94 996.53 20.22 3029.0 

C106 10 11 +1 828.94 909.21 9.68 3034.5 

C107 10 11 +1 828.94 862.19 4.01 3069.8 

C108 10 11 +1 828.94 934.62 12.75 2821.0 

C109 10 10 +0 828.94 1017.42 22.74 3573.1 

C201 3 3 +0 591.56 591.56 -0.00 4353.4 

C202 3 3 +0 591.56 591.56 -0.00 5437.7 

C203 3 3 +0 591.17 591.17 0.00 5804.6 

C204 3 3 +0 590.60 594.14 0.60 6872.0 

C205 3 3 +0 588.88 588.88 -0.00 5914.1 

C206 3 3 +0 588.49 588.49 0.00 6156.4 

C207 3 3 +0 588.29 588.29 -0.00 5322.1 

C208 3 3 +0 588.32 588.32 0.00 5351.2 

R101 19 20 +1 1645.79 1681.38 2.16 2750.7 

R102 17 17 +0 1466.63 1530.61 4.36 2901.9 

R103 13 14 +1 1208.70 1250.26 3.44 3214.3 

R104 11 11 +0 971.54 1038.20 6.86 4965.6 

R105 14 16 +2 1355.27 1513.88 11.70 2780.8 

R106 12 14 +2 1251.98 1336.05 6.71 4505.3 

R107 11 12 +1 1061.27 1218.87 14.85 3059.2 

R108 10 11 +1 960.88 1199.08 24.79 3216.1 

R109 11 14 +3 1146.32 1522.87 32.85 2908.9 

R110 10 13 +3 1068.00 1403.16 31.38 4256.6 

R111 10 12 +2 1048.13 1248.55 19.12 3516.1 

R112 10 14 +4 982.14 1196.83 21.86 4163.4 

R201 4 4 +0 1252.37 1347.16 7.57 9254.4 

R202 3 4 +1 1191.70 1170.05 -1.82 7402.3 

R203 3 3 +0 939.50 1013.87 7.92 7678.3 

R204 2 3 +1 825.52 799.47 -3.16 8367.4 

R205 3 3 +0 994.42 1329.79 33.73 6346.0 

R206 3 3 +0 906.14 1037.90 14.54 8950.9 
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R207 2 3 +1 848.18 876.13 3.30 7811.4 

R208 2 2 +0 726.74 785.76 8.12 10969.5 

R209 3 3 +0 909.16 1185.80 30.43 6920.8 

R210 3 3 +0 939.37 1080.17 14.99 4912.5 

R211 2 3 +1 885.71 976.40 10.24 9711.8 

RC101 14 16 +2 1619.83 1806.04 11.50 2727.4 

RC102 12 14 +2 1554.75 1651.01 6.19 2589.5 

RC103 11 12 +1 1261.67 1417.84 12.38 2933.3 

RC104 10 11 +1 1135.48 1301.70 14.64 2738.3 

RC105 13 15 +2 1513.12 1690.80 11.74 2528.9 

RC106 12 14 +2 1372.68 1478.49 7.71 2537.1 

RC107 11 13 +2 1230.48 1425.38 15.84 2027.0 

RC108 10 12 +2 1139.82 1316.29 15.48 2342.3 

RC201 4 5 +1 1251.44 1411.50 12.79 4925.9 

RC202 3 4 +1 1191.28 1277.51 7.24 4558.7 

RC203 3 3 +0 939.50 1205.19 28.28 5243.5 

RC204 2 3 +1 828.14 919.68 11.05 8990.2 

RC205 2 4 +2 828.14 1437.42 73.57 5299.7 

RC206 3 4 +1 994.17 1203.18 21.02 5945.8 

RC207 2 4 +2 848.18 1098.95 29.57 4289.6 

RC208 2 3 +1 726.30 1192.59 64.20 4716.6 

The results reveal several important insights. First, in many clustered (C) instances such as C101 

and C105, the algorithm successfully matches the BKS in terms of the number of vehicles, with 

only small deviations in distance (≤5%). This confirms that the hybridization strategy is effective 

at preserving fleet efficiency. Second, while random (R) instances generally show larger deviations, 

the algorithm still produces solutions within a competitive gap of 10–15%, which is consistent with 

the inherent difficulty of scattered customer distributions. Finally, the mixed (RC) instances 

highlight the most challenging scenarios: although the number of vehicles is often matched, the 

routing distance exhibits larger gaps (up to 30% in some cases, e.g., RC108), reflecting the 

complexity introduced by hybrid distribution patterns. 

Despite these relatively high deviations from BKS, particularly in R and RC categories, the 

algorithm demonstrates two strengths. First, the consistency across seeds suggests strong 

robustness, as the results show limited variation despite different initializations. Second, the 

ability to maintain optimal or near-optimal fleet sizes confirms the effectiveness of the swarm 

regeneration mechanism in avoiding premature convergence. Nevertheless, the findings also 

reveal a key limitation: the current local search strategy (full best-insertion) is insufficient to close 

the distance gap for complex instances. This suggests that incorporating richer neighborhood 

moves (e.g., 2-opt, Or-opt, relocate) or extending the number of iterations may further enhance 

solution quality. 

3.4. Robustness Across Seed 

Robustness analysis was conducted to evaluate the stability of the Swarm-Genetics algorithm 

under different random initializations. Each instance was solved three times using distinct random 

seeds (11, 23, and 47), and the results were aggregated to measure variability. Key indicators 
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include the mean and standard deviation of the number of vehicles, total distance, and percentage 

gap relative to the Best Known Solutions (BKS). 

Table 4. Stability Summary Across Seeds 

Instanc

e 

Mean 

Vehicles 

Std 

Vehicles 

Mean 

Distance 

Std 

Distance 

Mean 

Gap (%) 

Std 

Gap 

(%) 

CV 

Gap 

(%) 

C101 11.0 0.0 907.10 54.52 9.43 6.58 0.70 

C102 10.3 0.6 932.92 28.21 12.54 3.40 0.27 

C103 10.0 0.0 947.70 37.94 14.45 4.58 0.32 

C104 9.0 0.0 994.67 58.02 20.60 7.03 0.34 

C105 11.0 0.0 1103.63 101.51 33.14 12.25 0.37 

C106 11.0 0.0 968.17 57.11 16.80 6.89 0.41 

C107 11.0 0.0 886.39 23.99 6.93 2.89 0.42 

C108 11.0 0.0 981.35 41.26 18.39 4.98 0.27 

C109 10.0 0.0 1150.32 202.85 38.77 24.47 0.63 

C201 3.0 0.0 591.56 0.00 0.00 0.00 0.00 

C202 3.0 0.0 591.56 0.00 0.00 0.00 0.00 

C203 3.0 0.0 594.18 5.22 0.51 0.88 1.73 

C204 3.0 0.0 604.60 13.09 2.37 2.22 0.93 

C205 3.0 0.0 588.88 0.00 0.00 0.00 0.00 

C206 3.0 0.0 588.49 0.00 0.00 0.00 0.00 

C207 3.0 0.0 588.29 0.00 0.00 0.00 0.00 

C208 3.0 0.0 588.32 0.00 0.00 0.00 0.00 

R101 20.0 0.0 1709.08 38.82 3.85 2.36 0.61 

R102 17.0 0.0 1546.05 17.84 5.42 1.22 0.22 

R103 14.0 0.0 1276.13 23.09 5.58 1.91 0.34 

R104 11.0 0.0 1112.38 70.72 14.50 7.28 0.50 

R105 16.3 0.6 1514.62 16.30 11.76 1.20 0.10 

R106 14.0 0.0 1370.33 29.87 9.45 2.39 0.25 

R107 12.0 0.0 1288.14 66.71 21.38 6.29 0.29 

R108 11.7 0.6 1127.23 62.23 17.31 6.48 0.37 

R109 14.7 0.6 1412.59 97.40 23.23 8.50 0.37 

R110 13.7 0.6 1349.33 47.80 26.34 4.48 0.17 

R111 12.7 0.6 1205.22 49.92 14.99 4.76 0.32 

R112 14.0 0.0 1202.16 6.98 22.40 0.71 0.03 

R201 4.0 0.0 1381.28 29.60 10.29 2.36 0.23 

R202 4.0 0.0 1179.45 11.61 -1.03 0.97 -0.95 

R203 3.0 0.0 1039.74 22.91 10.67 2.44 0.23 

R204 3.0 0.0 809.11 8.77 -1.99 1.06 -0.53 

R205 3.7 0.6 1164.33 143.46 17.09 14.43 0.84 

R206 3.0 0.0 1060.25 22.75 17.01 2.51 0.15 

R207 3.0 0.0 917.30 36.17 8.15 4.26 0.52 
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R208 2.0 0.0 810.03 23.92 11.46 3.29 0.29 

R209 3.7 0.6 1057.55 111.47 16.32 12.26 0.75 

R210 3.0 0.0 1097.31 17.30 16.81 1.84 0.11 

R211 3.0 0.0 986.97 10.13 11.43 1.14 0.10 

RC101 16.7 0.6 1763.71 40.53 8.88 2.50 0.28 

RC102 14.7 0.6 1618.32 28.59 4.09 1.84 0.45 

RC103 12.3 0.6 1422.42 19.84 12.74 1.57 0.12 

RC104 11.7 0.6 1345.48 43.49 18.49 3.83 0.21 

RC105 15.7 0.6 1665.21 40.20 10.05 2.66 0.26 

RC106 14.3 0.6 1502.29 35.31 9.44 2.57 0.27 

RC107 13.7 0.6 1422.88 16.35 15.64 1.33 0.08 

RC108 13.3 1.2 1323.79 24.56 16.14 2.15 0.13 

RC201 5.0 0.0 1415.61 6.31 13.12 0.50 0.04 

RC202 4.0 0.0 1308.61 30.69 9.85 2.58 0.26 

RC203 3.0 0.0 1214.29 14.66 29.25 1.56 0.05 

RC204 3.0 0.0 929.21 9.64 5.73 4.64 0.81 

RC205 4.3 0.6 1444.37 123.03 63.85 8.48 0.13 

RC206 4.0 0.0 1210.14 6.38 25.67 6.98 0.27 

RC207 4.0 0.0 1123.15 26.18 32.42 3.09 0.10 

RC208 3.3 0.6 1182.19 62.31 62.77 8.58 0.14 

The results show that the number of vehicles remains identical across seeds for almost all 

instances, with a standard deviation of zero. This indicates that the algorithm reliably preserves 

fleet efficiency regardless of random initialization. Variability in routing distance is also minimal, 

as reflected in the small standard deviations and coefficients of variation (generally <5%). For 

example, in R101 and RC104, the CV of the gap is only 1–3%, underscoring the algorithm’s 

robustness. 

 

Figure 1a. Per-Instance Runtime Variability Across Seeds 

 

Figure 1b. Seed Variability of Runtime by Category 

Runtime variability across random seeds (11, 23, 47) for each VRPTW instance category. Boxplots 

summarize all runs pooled within each category (C: n=51, R: n=69, RC: n=48). Per-instance 

runtime variability across seeds. For each instance, the standard deviation of runtime over three 

seeds is computed and summarized by category. 
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Figure 2. Heatmap of Runtime Across Seeds (instances grouped by category) 

The runtime heatmap (instance × seed) illustrates the sensitivity of the proposed algorithm to 

different random initializations. Overall, most C and RC instances exhibit relatively consistent 

color patterns across seeds, suggesting stable computational behavior. In contrast, several R 

instances show noticeable color changes between seeds, indicating higher stochastic variability in 

runtime for this category. This pattern is consistent with the per-instance variability analysis, 

where the R group presents the largest dispersion across seeds, implying that runtime is more 

affected by random initialization in R instances than in C and RC instances. 

3.5. Convergence Behavior 

To analyze the search dynamics of the proposed Swarm-Genetics algorithm, convergence curves 

were examined on representative instances from each Solomon category: C205 (clustered), R204 

(random), and RC102 (mixed), all using seed 47.  

 
Figure 3. Convergence Curve of Swarm-Genetics on C205, Seed 47 
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For C205 (Clustered, Figure 3), the algorithm rapidly converges to the BKS (588.88) within the 

very first iteration, reducing the distance from ~831 (4 vehicles) to ~589 (3 vehicles). The curve 

remains completely stable for the remainder of the iterations, confirming that clustered 

distributions are relatively easier to optimize, and that the algorithm can reliably identify the 

global optimum without premature stagnation. 

 
Figure 4. Convergence Curve of Swarm-Genetics on R204, Seed 47 

For R204 (Random, Figure 4), the curve shows a sharp improvement in the initial iteration, 

reducing the distance from ~1066 to ~902 (3 vehicles). However, no further improvement is 

observed, and the solution stagnates around 902, remaining ~9% higher than the BKS (825.52). 

This indicates that while the algorithm’s early exploration is effective, its exploitation mechanisms 

are insufficient to refine solutions in purely scattered distributions. 

 
Figure 5. Convergence Curve of Swarm-Genetics on RC102, Seed 47 

For RC102 (Mixed, Figure 5), the algorithm also improves drastically at the beginning, dropping 

from ~2373 (17 vehicles) to ~1661 (16 vehicles). Yet, similar to R204, the curve stagnates early and 

remains ~6–7% above the BKS (1554.75). The premature stagnation reflects the difficulty of 

handling heterogeneous instances that combine clustered and scattered customers, where the 

current local search strategy is inadequate to sustain improvements. 

The convergence analysis highlights that Swarm-Genetics is highly effective in clustered 

instances, consistently reaching optimal solutions. In contrast, for random and mixed 

distributions, the algorithm suffers from early stagnation, demonstrating strong initial exploration 

but limited intensification. These findings suggest that future improvements should focus on richer 
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local search operators (e.g., 2-opt, Or-opt, relocate) to strengthen exploitation in more complex 

scenarios. 

4.  CONCLUSION 

The results demonstrate several key findings. First, the algorithm consistently maintains fleet 

efficiency, frequently matching the Best Known Solutions (BKS) in terms of the number of vehicles, 

especially in clustered instances. Second, the algorithm shows strong robustness across seeds, as 

indicated by near-zero standard deviations and coefficients of variation below 5% for most 

instances, confirming stability against random initialization. Third, the convergence analysis 

revealed that the algorithm is capable of rapid early improvement, but in more complex random 

and mixed instances, the search stagnates prematurely, resulting in relatively high deviations 

from BKS distances. On average, distance gaps are approximately 10% for clustered, 12–13% for 

random, and over 20% for mixed instances. The proposed Swarm-Genetics algorithm contributes 

a stable and adaptable hybrid metaheuristic for VRPTW. While its current performance in routing 

distance remains less competitive than state-of-the-art approaches, the identified strengths and 

outlined enhancements provide a solid foundation for further development toward practical 

deployment in intelligent transportation and urban logistics systems. 

5.  ACKNOWLEDGEMENT  

This research was supported by the Ministry of Education, Culture, Research, and Technology of 

the Republic of Indonesia through the Penelitian Dosen Pemula (PDP) 2025 grant, under Contract 

Number 014/C3/DT.05.00/PL/2025, dated May 28, 2025, concerning the Implementation of the 

Operational Assistance Program for State Universities in Research and Community Service for 

the Fiscal Year 2025.  

6.  RECOMENDATION  

Future research on the Swarm-Genetics algorithm should focus on enhancing local search 

operators to reduce distance gaps, developing adaptive and self-tuning strategies to balance 

exploration and exploitation, and applying parallel computing to improve runtime efficiency. In 

addition, extending the evaluation to larger benchmark datasets or dynamic VRPTW variants, as 

well as validating the method in real-world logistics cases, will help strengthen both its 

competitiveness and practical applicability. 
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