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Abstract  

This study formulates a nonparametric regression model for multiresponse data by combining 

three estimators: truncated spline, Fourier series, and kernel function. Each estimator captures 

specific characteristics. Truncated spline capture local traits with knot points, while fourier series 

capture periodic patterns and kernel estimators provide flexible smoothing for unknown functional 

forms. The model proposed is under an additive assumption where each predictor contributes 

independently to each response. Estimation is done with Weighted Least Squares (WLS) method 

which is efficient in managing the correlations between the multiresponse variables. The final 

multiresponse nonparametric regression curve estimator combining truncated spline, Fourier 

series, and kernel is given by �̂� =  �̂� + �̂� + �̂� obtained by solving the WLS optimization problem: 

𝐦𝐢𝐧
𝜷,𝜶

{𝝐′𝑾𝝐} = 𝐦𝐢𝐧
𝜷,𝜶

{(𝒚∗ −  𝑼𝜷 − 𝒁𝜶)′𝑾(𝒚∗ −  𝑼𝜷 − 𝒁𝜶)}. The solution to this problem results in the 

mixed estimator, which can be expressed as: �̂� = 𝑬𝒚 with 𝑬 = 𝑼𝑩 + 𝒁𝑨 + 𝑻. 

Keywords: Fourier Series; Kernel Smoothing; Multiresponse Nonparametric Regression; 

Truncated Spline; Weighted Least Square. 

 
Abstrak  

Studi ini merumuskan model regresi nonparametrik untuk data multirespon dengan 

menggabungkan tiga estimator: spline truncated, deret Fourier, dan fungsi kernel. Setiap 

estimator digunakan untuk menangkap karakteristik tertentu: spline truncated menangkap pola 

lokal melalui titik knot, deret Fourier menangkap pola periodik, sedangkan estimator kernel 

memberikan pelandaian yang fleksibel untuk bentuk fungsi yang tidak diketahui. Model yang 

diusulkan didasarkan pada asumsi aditif, di mana setiap peubah prediktor memberikan 

kontribusi secara independen terhadap masing-masing respon. Estimasi dilakukan dengan 

metode Weighted Least Squares (WLS) yang efisien dalam mengelola korelasi antar variabel 

respon. Estimator kurva regresi nonparametrik multirespon akhir yang menggabungkan spline 

truncated, deret Fourier, dan kernel diberikan oleh: �̂� =  �̂� + �̂� + �̂� yang diperoleh melalui 

penyelesaian masalah optimisasi WLS berikut: 𝐦𝐢𝐧
𝜷,𝜶

{𝝐′𝑾𝝐} = 𝐦𝐢𝐧
𝜷,𝜶

{(𝒚∗ −  𝑼𝜷 − 𝒁𝜶)′𝑾(𝒚∗ −  𝑼𝜷 −

𝒁𝜶)}. Solusi dari permasalahan ini menghasilkan estimator campuran, yang dapat dinyatakan 

sebagai: �̂� = 𝑬𝒚 dengan 𝑬 = 𝑼𝑩 + 𝒁𝑨 + 𝑻. 

Kata Kunci: Deret Fourier; Kernel; Kuadrat Terkecil dengan Bobot; Regresi Nonparametrik 

Multirespon; Spline Truncated 
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1. INTRODUCTION 

Statistics includes a various of disciplines such as time series, stochastic processes, 

probability, experimental design, reliability, and regression analysis (Budiantara, 2009). 

Of these, regression analysis occupies an important place as it is concerned with the 

relationship between one or more predictor variables and a response variable.  Regression 

models are typically classified as parametric, semiparametric, or nonparametric. When 

the model's functional form such as linear, quadratic, or polynomial is known, parametric 

regression is appropriate. When the underlying relationship between variables is 

unknown, however, nonparametric regression is the preferred method (Eubank, 1999). 

Since nonparametric regression does not force a predetermined structure on the data, it 

provides more flexibility in curve estimation. Nonparametric models minimize subjective 

bias by letting the data dictate the curve's shape, as (Eubank, 1999) pointed out. 

Numerous methods, including spline functions, Fourier series, kernel estimators, and 

others, have been developed over time for estimating nonparametric regression curves 

(Budiantara, 2009; Green & Silverman, 1993; Härdle, 1990; Wahba, 1990) . 

The truncated spline approach is a popular estimator that is renowned for its capacity to 

identify localized patterns in segmented data (I. N. Budiantara, 2004). The effectiveness 

of this technique depends on the number and placement of knots (Fitriyani & Budiantara, 

2014; Montoya et al., 2014). In contrast, the Fourier series estimator works well for 

simulating oscillatory behavior and periodic patterns in data (Asrini & Budiantara, 2014; 

Bilodeau, 1992). Although it is less flexible for non-periodic trends, it offers strong 

interpretability when repeated data behavior is seen. In the meantime, the kernel 

estimator is a potent smoothing method that works especially well when there is no 

discernible pattern in the data and can be readily adjusted to unknown functional forms 

(Budiantara & Mulianah, 2007; Härdle, 1990). 

Despite the advantages of truncated spline, Fourier series, and kernel estimators, existing 

studies have primarily focused on single-response or bi-response models, neglecting the 

complexities of multiresponse data where correlations between responses are significant. 

This gap limits the applicability of nonparametric regression in real-world scenarios 

where multiple interrelated outcomes are common. The study addresses this limitation 

by integrating these estimators within a multiresponse framework, leveraging the 

Weighted Least Squares (WLS) method to account for inter-response correlations. This 

approach not only enhances flexibility but also improves estimation efficiency, offering a 

more comprehensive solution for multivariate data analysis. 

Every one of these estimators has advantages and disadvantages. Kernel methods are 

sensitive to bandwidth selection, Fourier series may have trouble with irregular patterns, 

and truncated splines may cause oscillations close to data boundaries. This encourages 
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the creation of a mixed estimator approach, which combines the three techniques to 

improve overall model robustness and make up for their respective shortcomings. 

To better handle complex data structures, recent research has suggested combining two 

or more estimators in nonparametric regression (Adrianingsih et al., 2021; Budiantara et 

al., 2015; Nurcahayani et al., 2021). Nevertheless, single-response or bi-response models 

have been the focus of most of these efforts. The benefit of applying this method to a 

multiresponse setting is that it preserves the flexibility of nonparametric estimation while 

capturing joint variation among correlated responses. 

This study uses the Weighted Least Squares (WLS) method to estimate the parameters 

in such a situation. By using a variance–covariance weighting structure, WLS enables us 

to take into consideration response specific variances as well as correlations across 

multiple responses. To increase estimation efficiency and coherence, the process first 

addresses individual component estimation before fine-tuning the model under a 

weighted system. 

While prior studies (Budiantara et al., 2015; Nurcahayani et al., 2021) demonstrated the 

utility of mixed estimators for single-response data, their approaches fail to account for 

correlated multiresponse structures. This model bridges this gap by integrating truncated 

splines, Fourier series, and kernel smoothing under a WLS framework, enabling joint 

estimation while preserving flexibility. Developing a mixed estimator model with 

truncated spline, Fourier series, and kernel components for multiresponse nonparametric 

regression, this model provides a thorough framework for capturing complex data 

behavior because it is made to adjust to different functional patterns in the predictor-

response relationship. 

2. MATERIAL AND METHODS 

2.1 Truncated Spline Function 

Since a truncated spline is a continuous piecewise polynomial segment, splines can handle 

data patterns that exhibit increases or decreases with the aid of knot points, and the curve 

that results is comparatively smooth. Knot points are typical intersections that show 

shifts in the function's pattern of behavior over various time periods. The following form 

is a general way to express the truncated spline regression equation of order 𝑝𝑗for the 

function 𝑓 (Härdle, 1990; Wahba, 1990). 

𝑓𝑗(𝑢𝑎𝑖) = ∑ 𝛽𝑣𝑎𝑗𝑢𝑎𝑖
𝑣 + ∑ 𝜆𝑎𝑙𝑗

𝑠

𝑙=1

𝑝𝑗

𝑣=0

(𝑢𝑎𝑖 − 𝐾𝑎𝑙𝑗)+

𝑝𝑗
 (1) 

The knot points are denoted by 𝐾, which are the points where the pattern of the function 

changes in the spline model. The number of knots used in this model is denoted as 𝑠, while 
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𝑝𝑗 represents the number of spline orders used for the response variable 𝑗, with 𝑗 =

1,2, …  𝑚. Each data point in the analysis has an index i, which indicates the order of the 

data from 𝑖 = 1,2,3,…  𝑛, with 𝑛 being the total number of data points used. The response 

variables in the model amount to 𝑚, which reflect the number of aspects or characteristics 

being estimated. The parameters in this model are denoted by 𝛽 and 𝜆, which play a role 

in determining the shape and flexibility of the regression curve estimation. with the 

function (𝑢𝑎𝑖 − 𝐾𝑎𝑙𝑗)+

𝑝𝑗
 being a truncated function given by: 

(𝑢𝑎𝑖 − 𝐾𝑎𝑙𝑗)+

𝑝𝑗
= {

(𝑢𝑎𝑖 − 𝐾𝑎𝑙𝑗)+

𝑝𝑗
  , 𝑢𝑎𝑖 ≥ 𝐾𝑎𝑙𝑗

         0              , 𝑢𝑎𝑖 < 𝐾𝑎𝑙𝑗
 (2) 

2.2 Fourier Series Function 

The Fourier series is a trigonometric polynomial function that has a high degree of 

flexibility. Fourier series are usually used for unknown data patterns and tend to have 

seasonal patterns in the observed data. With the expansion into the form of a Fourier 

series, a periodic function can be expressed as the sum of several harmonic functions, 

namely sine and cosine functions (Bilodeau, 1992). According to (Tripena & Budiantara, 

2006), a multivariable nonparametric regression model is given: 

𝑦𝑖 = 𝑔(𝑧1𝑖, 𝑧2𝑖, … , 𝑧𝑞𝑖) + 𝜀𝑖 

= ∑ 𝑔(𝑧𝑏𝑖) + 𝜀𝑖,

𝑞

𝑏=1

𝑏 = 1,2, . . . , 𝑞 
(3) 

A Fourier series function approximates the regression curve 𝑔(𝑧𝑗𝑖), which is assumed to 

be unknown and to belong to the space of continuous functions 𝐶(0, 𝜋), with random error 

𝜀𝑖i assumed to be independently normally distributed with mean 0 and variance 𝜎2. 

𝑔𝑗(𝑧𝑏𝑖)  =  𝛾𝑏𝑗𝑧𝑏𝑖 +
1

2
𝛿0𝑏𝑗  + ∑ 𝛿𝜃𝑏𝑗  𝑐𝑜𝑠 𝜃𝑧𝑙𝑖

𝑒

𝜃=1

, (4) 

with 𝛾𝑗, 𝛿0𝑗, 𝛿𝜃𝑗 being the model parameters. 

2.3 Kernel Function 

In statistics, kernel regression is a nonparametric method for calculating a random 

variable's conditional expectation. Finding a nonlinear relationship between two random 

variables, x and y, is the aim in order to determine and apply the proper weights. The 

kernel K is generally defined as follows (Bowman & Azzalini, 1997): 

𝐾𝜓(𝑡) =
1

𝜓
𝐾 (

𝑡

𝜓
) ; −∞ < 𝑡 < ∞,𝜓 > 0  
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Kernels can perform a variety of functions, including triweight, cosine, quadratic, 

Gaussian, Epanechnikov, and uniform kernels (Härdle, 1990). Equation (5) defines the 

Gaussian Kernel function, which is superior to models that use other kernel functions 

(Hidayat et al, 2020; Wand and Jones, 1994). 

𝐾(𝑡) =
1

√2𝜋
𝑒𝑥𝑝 (

1

2
(−𝑡2)) ; −∞ < 𝑡 < ∞ (5) 

Only local constants are present in the Nadaraya-Watson Kernel regression model, which 

is a local polynomial model. Consequently, the function can be minimized using Equation 

(6) if ℎ(𝑡𝑖) only contains local constants: 

ℎ(𝑡𝑖) = ∑ 𝑛−1 [
𝐾𝜓(𝑡 − 𝑡𝑜)

𝑛−1 ∑ 𝐾𝜓(𝑡 − 𝑡𝑚)𝑛
𝑚=1

]

𝑛

𝑜=1

𝑦𝑖 = 𝑛−1 ∑𝑉𝜓𝑜(𝑡)𝑦𝑜

𝑛

𝑖=𝑜

 (6) 

2.4 Methods 

• Given paired data  (𝑢1𝑖, … , 𝑢𝑝𝑖, 𝑧1𝑖, … , 𝑧𝑞𝑖, 𝑡1𝑖 , … 𝑡𝑟𝑖 , 𝑦1𝑖 , … , 𝑦𝑚𝑖) and the relationship 

between predictor variables  (𝑢1𝑖, … , 𝑢𝑝𝑖 , 𝑧1𝑖, … , 𝑧𝑞𝑖, 𝑡1𝑖, … 𝑡𝑟𝑖 , 𝑦1𝑖 , … , 𝑦𝑚𝑖) and response 

variables (𝑦1𝑖 , … , 𝑦𝑚𝑖) meets the requirements of the multiresponse nonparametric 

regression model, as done by Equation (7). 

𝑦𝑗𝑖 = ∑ 𝑓𝑗(𝑢𝑎𝑖)

𝑝

𝑎=1

+ ∑ 𝑔𝑗(𝑧𝑏𝑖)

𝑞

𝑏=1

+ ∑ ℎ𝑗(𝑡𝑐𝑖)

𝑟

𝑐=1

+ 𝜖𝑗𝑖 (7) 

• Component ∑ 𝑓𝑗(𝑢𝑎𝑖)
𝑝
𝑎=1  is approximated with a truncated spline function, the 

component ∑ 𝑔𝑗(𝑧𝑏𝑖)
𝑞
𝑏=1  is approximated with a Fourier series function, and the 

component ∑_(c=1) ^ ∑ ℎ𝑗(𝑡𝑐𝑖)
𝑟
𝑐=1  is approximated with a kernel function. 

• Arranging a mixed multiresponse nonparametric regression model into vector form 

as follows:  

𝒚 = 𝒇 + 𝒈 + 𝒉 + 𝜺 

where 𝒚 = [𝒚11 𝒚12 …𝒚1𝑛 … 𝒚𝑚1 𝒚𝑚2 …𝒚𝑚𝑛]𝑇 and 𝜺 = [𝜺11 𝜺12 … 𝜺1𝑛 … 𝜺𝑚1 𝜺𝑚2 …𝜺𝑚𝑛]𝑇. 

• Put the mixed multiresponse nonparametric regression model in the form of 𝒚∗ =

 𝑼𝜷 + 𝒁𝜽 + 𝜺, where 𝒚∗ = (𝑰 − 𝑻)𝒚. 

• Forming the variance-covariance matrix 𝑾 as a weighting. 
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𝑾 = (

𝜎11 𝜎12 ⋯ 𝜎1𝑚

𝜎12 𝜎22 ⋯ 𝜎2𝑚

⋮ ⋮ ⋱ ⋮
𝜎1𝑚 𝜎2𝑚 ⋯ 𝜎𝑚𝑚

 ) ⊗ 𝑰 

• Solve the following optimization to estimate �̂� using the WLS method. 

𝐌𝐢𝐧
𝜷

{(𝒚∗ −  𝑼𝜷 − 𝒁𝜽)𝑻𝑾(𝒚∗ −  𝑼𝜷 − 𝒁𝜽)} 

• Completing the calculation of the partial first derivative and set to zero. 

𝝏((𝒚∗ −  𝑼𝜷 − 𝒁𝜽)𝑻𝑾(𝒚∗ −  𝑼𝜷 − 𝒁𝜽))

𝝏𝜷
 

• Solve the following optimization to estimate �̂� using the WLS method. 

𝐌𝐢𝐧
𝜽

{(𝒚∗ −  𝑼𝜷 − 𝒁𝜽)𝑻𝑾(𝒚∗ −  𝑼𝜷 − 𝒁𝜽)} 

• Completing the calculation of the partial first derivative and set to zero. 

𝝏((𝒚∗ −  𝑼𝜷 − 𝒁𝜽)𝑻𝑾(𝒚∗ −  𝑼𝜷 − 𝒁𝜽))

𝝏𝜽
 

• Obtained estimators in nonparametric multivariate response regression with 

truncated spline, Fourier series, and kernel: 

�̂�𝑗𝑖 = ∑ �̂�𝑗(𝒖𝑎𝑖)

𝑝

𝑎=1

+ ∑ �̂�𝑗(𝒛𝑏𝑖)

𝑞

𝑏=1

+ ∑ �̂�𝑗(𝒕𝑐𝑖)

𝑟

𝑐=1

 

2.4 Data Source 

This study uses secondary data in 2024 from publications by the Statistics of Indonesia 

(BPS). The model obtained is applied to Poverty Indicators in 38 districts/cities in East 

Java. This study uses the Percentage of Poor People (𝑌1), Poverty Depth Index (𝑌2), and 

Poverty Severity Index (𝑌3) as composite response variables to measure Poverty 

Indicators in East Java. The predictor variables used are the Life Expectancy (𝑋1), the 

Mean of Years Schooling (𝑋2), and the Labor Force Participation Rate (𝑋3). 

There are several combinations for the model to find which variables match the estimator 

used. There is also a combination of knot points and oscillations that are limited to using 

only 1 knot point with 1 oscillation and 2 knot points with 2 oscillations. So that it 

produces the model in the following Table 1. 
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Table 1. Every Combination of Trial Models 

Model Variables Number of 

Models Truncated Spline Fourier Series Kernel 

A.1 𝑋1 𝑋2 𝑋3 2 

A.2 𝑋1 𝑋3 𝑋2 2 

A.3 𝑋2 𝑋1 𝑋3 2 

A.4 𝑋2 𝑋3 𝑋1 2 

A.5 𝑋3 𝑋2 𝑋1 2 

A.6 𝑋3 𝑋1 𝑋2 2 

B 𝑋1, 𝑋2, 𝑋3   2 

C  𝑋1, 𝑋2, 𝑋3  2 

D   𝑋1, 𝑋2, 𝑋3 1 

Total of Model 17 

 

2.5 Smoothing Parameter Selection 

An essential step in nonparametric regression modeling involves determining the optimal 

configuration for knot placement, oscillation level, and smoothing parameters. A large 

smoothing parameter results in an overly smooth estimator that may underfit the data, 

whereas a small smoothing parameter produces a rough estimator that is more sensitive 

to noise and may lead to overfitting (Wahba, 1990). Therefore, selecting an appropriate 

method for tuning the smoothing parameters is crucial. In this study, the smoothing 

parameter selection is performed using the Generalized Cross Validation (GCV) approach, 

as previously implemented by (Wahba, 1990), with its optimality properties 

comprehensively discussed by (Craven & Wahba, 1978). The GCV method is adapted here 

to accommodate the structure of the proposed model, which integrates three types of 

estimators truncated spline, Fourier series, and kernel functions within a unified 

multiresponse nonparametric regression framework. The modified GCV formulation used 

to optimize this combined estimator is presented in the following section. 

𝐺𝐶𝑉(𝑲, 𝜽,𝝍) =
𝑀𝑆𝐸(𝑲, 𝜽,𝝍)

(𝑁−𝟏𝑡𝑟[𝑰 − 𝑬(𝑲, 𝜽,𝝍)])2
 (8) 

where  

𝑀𝑆𝐸(𝑲, 𝜽,𝝍) = 𝑁−𝟏𝒚𝑇(𝑰 − 𝑬(𝑲, 𝜽, 𝝍))
𝑇
(𝑰 − 𝑬(𝑲, 𝜽,𝝍))𝒚 

For the mixed estimator, GCV optimizes knot locations (spline), oscillation count 

(Fourier), and bandwidth (kernel) jointly by minimizing Equation (8), where the 

smoothing matrix 𝑬 accounts for all three components. 
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3. RESULT  

3.1 Model of Combined Truncated Spline, Fourier Series, and Kernel Estimators 

The regression curve estimators defined in Equations (1), (4), and (6), which represent the 

truncated spline, Fourier series, and kernel components respectively, depend on their 

associated parameters, such as the spline coefficients, Fourier amplitudes, and the 

smoothing matrix. Consequently, the estimator of the combined regression model in 

Equation (7) is obtained by applying the Weighted Least Squares (WLS) method. For this 

purpose, the following lemmas and theorems are established to derive the closed-form 

solutions of the estimated regression curve. 

Given paired data (𝑢1𝑖, … , 𝑢𝑝𝑖, 𝑧1𝑖, … , 𝑧𝑞𝑖, 𝑡1𝑖 , … 𝑡𝑟𝑖, 𝑦1𝑖 , … 𝑦𝑚𝑖), where each data component 

consists of three predictor groups and one response group. First, the vector 𝒖𝑖 =

[𝑢1𝑖, 𝑢2𝑖, … , 𝑢𝑝𝑖] predictor variables that form the truncated spline components. Then, the 

vector 𝒛𝑖 = [𝑧1𝑖, 𝑧2𝑖, … , 𝑧𝑞𝑖] represents the predictor variables used as kernel components. 

Next, the vector 𝒕𝑖 = [𝑡1𝑖 , 𝑡2𝑖 , … 𝑡𝑟𝑖] predictor variables that are components of the Fourier 

series. Finally, the vector 𝒚𝑖 = [𝑦1𝑖 , 𝑦2𝑖, … , 𝑦𝑚𝑖] represents the multivariate response to be 

modeled. The multiresponse nonparametric regression model for the data is shown in 

Equation (9). 

Let 𝑦𝑗𝑖 denote the j-th response variable for the i-th observation. Let 𝑢𝑎𝑗, 𝑧𝑏𝑗, and 𝑡𝑐𝑗 denote 

the predictor variables associated respectively with truncated spline, Fourier series, and 

kernel estimators. The general additive model is:  

𝑦𝑗𝑖 = 𝝁𝑗(𝒖𝑖, 𝒛𝑖 , 𝒕𝑖) + 𝜖𝑗𝑖, 𝜖𝑗𝑖~𝑁(0, 𝜎𝑗
2) (9) 

The random error component 𝜖𝑗𝑖 detailed in (Wang et al., 2000), in Equation (9) assuming 

𝜖𝑗𝑖~𝑁(0, 𝜎𝑗
2). When considering multiple responses 𝑦𝑗𝑖 and 𝑦𝜏𝑖, the errors may be 

correlated. The correlation between the 𝑗-th and 𝜏-th response errors for the same 

observation 𝑖 is defined as 𝑐𝑜𝑟𝑟(𝜀𝑗𝑖𝜀𝜏𝑖) = 𝜌, for 𝑗 ≠ 𝜏, and zero otherwise with 𝑗, 𝜏 =

1,2, … , 𝑚. This structure implies a consistent inter-response correlation across 

observations. The correlation coefficient 𝜌 is defined by 𝜌 =
𝑐𝑜𝑣(𝜀𝑗𝑖𝜀𝜏𝑖)

√𝜎𝑗
2𝜎𝜏

2
, leading to a 

covariance term 𝜎𝑗𝜏 = 𝜌√𝜎𝑗
2𝜎𝜏

2. Where 𝜇𝑖𝑗(𝑢𝑝𝑖, 𝑧𝑞𝑖, 𝑡𝑟𝑖) is an unknown regression function 

assumed to be additive: 
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𝝁𝑗(𝒖𝑖, 𝒛𝑖 , 𝒕𝑖) = 𝑓𝑗(𝑢1𝑖, … , 𝑢𝑝𝑖) + 𝑔𝑗(𝑧1𝑖, … , 𝑧𝑞𝑖) + ℎ𝑗(𝑡1𝑖 , … 𝑡𝑟𝑖) 

= 𝑓𝑗(𝑢1𝑖) + ⋯ + 𝑓𝑗(𝑢𝑝𝑖) + 𝑔𝑗(𝑧1𝑖) + ⋯ + 𝑔𝑗(𝑧𝑞𝑖) + ℎ𝑗(𝑡1𝑖) + ⋯+ ℎ𝑗(𝑡𝑟𝑖) 

= ∑ 𝑓𝑗(𝑢𝑎𝑖)

𝑝

𝑎=1

+ ∑ 𝑔𝑗(𝑧𝑏𝑖)

𝑞

𝑏=1

+ ∑ ℎ𝑗(𝑡𝑐𝑖)

𝑟

𝑐=1

 

(10) 

As stated in Equation (10), the multiresponse nonparametric regression function consists 

of the sum of truncated spline components, Fourier series, and kernels. In the component 

𝑓𝑗(𝑢𝑎𝑖), it will be approximated with a linear truncated spline function with s knot points 

presented in Equation (11). 

𝑓𝑗(𝑢𝑎𝑖) = 𝛽0𝑎𝑗 + 𝛽1𝑎𝑗𝑢𝑎𝑖 + ∑𝜆𝑙𝑎𝑗(𝑢𝑎𝑖 − 𝐾𝑙𝑎𝑗)+

𝑠

𝑙=1

 (11) 

The function 𝑓𝑗(𝑢𝑎𝑖) with one predictor variable, symbolized as 𝑎, can be written in the 

following matrix form: 

𝒇𝑎𝑗(𝒖𝑎) =

[
 
 
 
𝑓𝑎𝑗(𝑢𝑎1)

𝑓𝑎𝑗(𝑢𝑎2)

⋮
𝑓𝑎𝑗(𝑢𝑎𝑛)]

 
 
 

=

[
 
 
 
 
 
 
 
 
 𝛽0𝑎𝑗 + 𝛽1𝑎𝑗𝑢𝑎1 + ∑𝜆𝑙𝑎𝑗(𝑢𝑎1 − 𝐷𝑙𝑎𝑗)+

𝑠

𝑙=1

𝛽0𝑎𝑗 + 𝛽1𝑎𝑗𝑢𝑎2 + ∑𝜆𝑙𝑎𝑗(𝑢𝑎2 − 𝐷𝑙𝑎𝑗)+

𝑠

𝑙=1

⋮

𝛽0𝑎𝑗 + 𝛽1𝑎𝑗𝑢𝑎𝑛 + ∑𝜆𝑙𝑎𝑗(𝑢𝑎𝑛 − 𝐷𝑙𝑎𝑗)+

𝑠

𝑙=1 ]
 
 
 
 
 
 
 
 
 

 

=

[
 
 
 
 1 𝑢𝑎1 (𝑢𝑎1 − 𝐷1𝑎𝑗)+

(𝑢𝑎1 − 𝐷2𝑎𝑗)+
⋯ (𝑢𝑎1 − 𝐷𝑠𝑎𝑗)+

1
⋮

𝑢𝑎2

⋮
(𝑢𝑎2 − 𝐷1𝑎𝑗)+

(𝑢𝑎2 − 𝐷2𝑎𝑗)+
⋯ (𝑢𝑎2 − 𝐷𝑠𝑎𝑗)+

⋮                          ⋮                ⋱             ⋮   

1 𝑢𝑎𝑛 (𝑢𝑎𝑛 − 𝐷1𝑎𝑗)+
(𝑢𝑎𝑛 − 𝐷2𝑎𝑗)+

⋯ (𝑢𝑎𝑛 − 𝐷𝑠𝑎𝑗)+]
 
 
 
 

[
 
 
 
 
 
 
𝛽0𝑎𝑗

𝛽1𝑎𝑗

𝜆1𝑎𝑗

𝜆2𝑎𝑗

⋮
𝜆𝑠𝑎𝑗 ]

 
 
 
 
 
 

 

= 𝑼𝑎𝑗𝜷𝑎𝑗 (12) 

Likewise, the truncated spline function for the p number of predictors nonparametric 

regression shown in Equation (13) for 𝑎 =  1, 2, . . . , 𝑝 predictors can be expressed as: 
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𝒇𝑗 = ∑ 𝒇𝑎𝑗

𝑝

𝑎=1

 

= 𝒇1𝑗 + 𝒇2𝑗 + ⋯+ 𝒇𝑝𝑗 

= 𝑼1𝑗𝜷1𝑗 + 𝑼2𝑗𝜷2𝑗 + ⋯ + 𝑼𝑝𝑗𝜷𝑝𝑗  

= ∑ 𝑼𝑎𝑗𝜷𝑎𝑗

𝑝

𝑎=1

 

= 𝑼𝑗𝜷𝑗 

(13) 

where 𝜷𝑗 = [𝛽01𝑗 𝛽11𝑗 𝜆11𝑗 𝜆21𝑗 ⋯ 𝜆𝑠𝑎𝑗 ⋯ 𝛽0𝑝𝑗 𝛽1𝑝𝑗 𝜆1𝑝𝑗 ⋯ 𝜆𝑠𝑝𝑗]
′
 and 

𝑼𝑗 =

[
 
 
 
 
 1 𝑢𝑎1 (𝑢𝑎1 − 𝐷1𝑎𝑗)+

⋯ (𝑢𝑎1 − 𝐷𝑠𝑎𝑗)+
⋯ 1 𝑢𝑝1 (𝑢𝑝1 − 𝐷1𝑝𝑗)+

⋯ (𝑢𝑝1 − 𝐷𝑠𝑝𝑗)+

1
⋮

𝑢𝑎2

⋮
(𝑢𝑎2 − 𝐷1𝑎𝑗)+

⋯ (𝑢𝑎2 − 𝐷𝑠𝑎𝑗)+
⋯ 1 𝑢𝑝2 (𝑢𝑝2 − 𝐷1𝑝𝑗)+

⋯ (𝑢𝑝2 − 𝐷𝑠𝑝𝑗)+

⋮             ⋱              ⋮             ⋱   ⋮   ⋮              ⋮                ⋱           ⋮  

1 𝑢𝑎𝑛 (𝑢𝑎𝑛 − 𝐷1𝑎𝑗)+
⋯ (𝑢𝑎𝑛 − 𝐷𝑠𝑎𝑗)+

⋯ 1 𝑢𝑝𝑛 (𝑢𝑝𝑛 − 𝐷1𝑝𝑗)+
⋯ (𝑢𝑝𝑛 − 𝐷𝑠𝑝𝑗)+]

 
 
 
 
 

 

Equation (14) is the result of expressing the truncated multiresponse spline function in 

matrix form using Equation (13). 

𝒇 = [

𝒇1

𝒇2

⋮
𝒇𝑚

] 

= [

𝑼1𝜷1

𝑼2𝜷2

⋮
𝑼𝑚𝜷𝑚

] 

= [

𝑼1 0 ⋯ 0
0 𝑼2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑼𝑚

] [

𝜷1

𝜷2

⋮
𝜷𝑚

] 

= 𝑼𝑛𝑚×(𝑝(𝑠+2))𝑚𝜷(𝑝(𝑠+2))𝑚×1 

(14) 

Next, the component 𝑔𝑗(𝑧𝑏𝑖) is approximated with a Fourier series with oscillation 𝑒 in 

Equation (15). 

𝑔𝑗(𝑧𝑏𝑖)  =  𝛼𝑏𝑗𝑧𝑏𝑖 +
1

2
𝛿0𝑏𝑗  + ∑ 𝛿𝜃𝑏𝑗 𝑐𝑜𝑠 𝜃𝑧𝑏𝑖

𝑒

𝜃=1

 (15) 

If function 𝒈𝑗(𝒛𝑏) = [𝑔𝑗(𝑧𝑏1)   𝑔𝑗(𝑧𝑏2)  …  𝑔𝑗(𝑧𝑏𝑛)]
′
, then the function 𝒈𝑗(𝒛𝑏) with one 

predictor variable, symbolized as 𝑏, can be written in the following matrix form: 
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𝒈𝑗(𝒛𝑏) =

[
 
 
 
𝑔𝑗(𝑧𝑏1)

𝑔𝑗(𝑧𝑏2)

⋮
𝑔𝑗(𝑧𝑏𝑛)]

 
 
 

=

[
 
 
 
 
 
 
 
 
 𝛼𝑏𝑗𝑧𝑏1 +

1

2
𝛿0𝑏𝑗  + ∑ 𝛿𝜃𝑏𝑗 𝑐𝑜𝑠 𝜃𝑧𝑏1

𝑒

𝜃=1

𝛼𝑏𝑗𝑧𝑏2 +
1

2
𝛿0𝑏𝑗  + ∑ 𝛿𝜃𝑏𝑗 𝑐𝑜𝑠 𝜃𝑧𝑏2

𝑒

𝜃=1

⋮

𝛼𝑏𝑗𝑧𝑏𝑛 +
1

2
𝛿0𝑏𝑗  + ∑ 𝛿𝜃𝑏𝑗 𝑐𝑜𝑠 𝜃𝑧𝑏𝑛

𝑒

𝜃=1 ]
 
 
 
 
 
 
 
 
 

 

=

[
 
 
 
 
 
 𝛼𝑏𝑗zb1 +

1

2
𝛿0𝑏𝑗  + 𝛿1𝑏𝑗 𝑐𝑜𝑠 1𝑧𝑏1 + 𝛿2𝑏𝑗 𝑐𝑜𝑠 2𝑧𝑏1 + ⋯ + 𝛿𝑒𝑏𝑗 𝑐𝑜𝑠 𝑒𝑧𝑏1

𝛼𝑏𝑗zb2 +
1

2
𝛿0𝑏𝑗  + 𝛿1𝑏𝑗 𝑐𝑜𝑠 1𝑧𝑏2 + 𝛿2𝑏𝑗 𝑐𝑜𝑠 2𝑧𝑏2 + ⋯ + 𝛿𝑒𝑏𝑗 𝑐𝑜𝑠 𝑒𝑧𝑏2

⋮

𝛼𝑏𝑗zbn +
1

2
𝛿0𝑏𝑗  + 𝛿1𝑏𝑗 𝑐𝑜𝑠 1𝑧𝑏𝑛 + 𝛿2𝑏𝑗  𝑐𝑜𝑠 2𝑧𝑏𝑛 + ⋯+ 𝛿𝑒𝑏𝑗 𝑐𝑜𝑠 𝑒𝑧𝑏𝑛]

 
 
 
 
 
 

 

=

[
 
 
 
 
 
 𝑧𝑏1

1

2
 𝑐𝑜𝑠 1𝑧𝑏1  𝑐𝑜𝑠 2𝑧𝑏1 …  𝑐𝑜𝑠 𝑒𝑧𝑏1

𝑧𝑏2

1

2
 𝑐𝑜𝑠 1𝑧𝑏2  𝑐𝑜𝑠 2𝑧𝑏2 …  𝑐𝑜𝑠 𝑒𝑧𝑏2

⋮ ⋮ ⋮ ⋮ ⋱ ⋮

𝑧𝑏𝑛

1

2
𝑐𝑜𝑠 1𝑧𝑏𝑛  𝑐𝑜𝑠 2𝑧𝑏𝑛 …  𝑐𝑜𝑠 𝑒𝑧𝑏𝑛]

 
 
 
 
 
 

[
 
 
 
 
 
 
𝛼𝑏𝑗

𝛿0𝑏𝑗

𝛿1𝑏𝑗

𝛿2𝑏𝑗

⋮
𝛿𝑒𝑏𝑗]

 
 
 
 
 
 

 

 = 𝒁𝑏𝑗  𝜶𝑏𝑗 (16) 

Likewise, the fourier series function for the 𝑞 number of predictors nonparametric 

regression shown in Equation (17) for 𝑏 =  1, 2, . . . , 𝑞 predictors can be expressed as: 

𝒈𝑗 = ∑ 𝒈𝑏𝑗

𝑞

𝑏=1

 

= 𝒈1𝑗 + 𝒈2𝑗 + ⋯+ 𝒈𝑞𝑗  

= 𝒁1𝑗 𝜶1𝑗 + 𝒁2𝑗  𝜶2𝑗 + ⋯+ 𝒁𝑞𝑗 𝜶𝑞𝑗 

= ∑ 𝒁𝑏𝑗 𝜶𝑏𝑗

𝑞

𝑏=1

 

= 𝒁𝑗 𝜶𝑗 (17) 

Where 𝜶𝑗 = [𝛼1𝑗 𝛿01𝑗 𝛿11𝑗 𝛿21𝑗 … 𝛿𝑒1𝑗 … 𝛼𝑞𝑗 𝛿0𝑞𝑗 𝛿1𝑞𝑗 𝛿2𝑞𝑗 … 𝛿𝑒𝑞𝑗]′ and 

𝒁𝑚 =

[
 
 
 
𝑧11 1/2 𝑐𝑜𝑠 1𝑧11 𝑐𝑜𝑠 2𝑧11 … 𝑐𝑜𝑠 𝑒𝑧11 … 𝑧𝑞1 1/2 𝑐𝑜𝑠 1𝑧11 𝑐𝑜𝑠 2𝑧11 … 𝑐𝑜𝑠 𝑒𝑧11

𝑧12 1/2 𝑐𝑜𝑠 1𝑧12 𝑐𝑜𝑠 2𝑧12 … 𝑐𝑜𝑠 𝑒𝑧12 … 𝑧𝑞2 1/2 𝑐𝑜𝑠 1𝑧12 𝑐𝑜𝑠 2𝑧12 … 𝑐𝑜𝑠 𝑒𝑧12

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮
𝑧1𝑛 1/2 𝑐𝑜𝑠 1𝑧1𝑛 𝑐𝑜𝑠 2𝑧1𝑛 … 𝑐𝑜𝑠 𝑒𝑧1𝑛 … 𝑧𝑞𝑛 1/2 𝑐𝑜𝑠 1𝑧1𝑛 𝑐𝑜𝑠 2𝑧1𝑛 … 𝑐𝑜𝑠 𝑒𝑧1𝑛]
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Based on Equation (17), the multiresponse Fourier series function is expressed in matrix 

form as shown in Equation (18). 

𝒈 = [

𝒈1

𝒈2

⋮
𝒈𝑚

] 

= [

𝒁1 𝜶1

𝒁2 𝜶2

⋮
𝒁𝑚 𝜶𝑚

] 

= [

𝒁1 0 ⋯ 0
0 𝒁2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝒁𝑚

] [

𝜶1

𝜶2

⋮
𝜶𝑚

] 

 

 

= 𝒁𝑛𝑚×(2+𝑒)𝑞𝑚𝜶(2+𝑒)𝑞𝑚×1 (18) 

The function ℎ𝑗(𝑡𝑐𝑖) is an estimate of the nonparametric regression function using the 

Gaussian kernel approach. The weight 𝑉𝜓𝑐𝑗𝑜
(𝑡𝑐𝑖) represents the contribution of the 𝑜-th 

observation to the estimate at the point 𝑡𝑐𝑖, calculated based on the proximity between 𝑡𝑐𝑖 

and 𝑡𝑜, influenced by the bandwidth parameter 𝜓. The kernel function used is the 

Gaussian kernel, expressed in the form of Equation (19). 

ℎ𝑗(𝑡𝑐𝑖) = ∑ 𝑛−1 [
𝐾𝜓(𝑡 − 𝑡𝑜)

𝑛−1 ∑ 𝐾𝜓(𝑡 − 𝑡𝑗)
𝑛
𝑗=1

]

𝑛

𝑜=1

𝑦𝑗𝑜 = 𝑛−1 ∑ 𝑉𝜓𝑐𝑗𝑜
(𝑡𝑐𝑖)𝑦𝑗𝑜

𝑛

𝑜=1

 (19) 

If function 𝒉𝑗(𝒕𝑐) = [ℎ𝑗(𝑡𝑐1)   ℎ𝑗(𝑡𝑐2)  …  ℎ𝑗(𝑡𝑐𝑛)]
′
, then the function 𝒉𝑗(𝒕𝑐) with one 

predictor variable, symbolized as 𝑏, can be written in the following matrix form: 

𝒉𝑗(𝒕𝑐) =

[
 
 
 
ℎ𝑗(𝑡𝑐1)

ℎ𝑗(𝑡𝑐2)

⋮
ℎ𝑗(𝑡𝑐𝑛)]

 
 
 

=

[
 
 
 
 
 
 
 
 
 𝑛−1 ∑ 𝑉𝜓𝑐𝑗𝑜

(𝑡𝑐1)𝑦𝑗𝑜

𝑛

𝑜=1

𝑛−1 ∑ 𝑉𝜓𝑐𝑗𝑜
(𝑡𝑐2)𝑦𝑗𝑜

𝑛

𝑜=1

⋮

𝑛−1 ∑ 𝑉𝜓𝑐𝑗𝑜
(𝑡𝑐𝑛)𝑦𝑗𝑜

𝑛

𝑜=1 ]
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=

[
 
 
 
 
𝑛−1𝑉𝜓𝑐𝑗1

(𝑡𝑐1)𝑦𝑗1 + 𝑛−1𝑉𝜓𝑐𝑗2
(𝑡𝑐1)𝑦𝑗2 + ⋯+ 𝑛−1𝑉𝜓𝑐𝑗𝑛

(𝑡𝑐1)𝑦𝑗𝑛

𝑛−1𝑉𝜓𝑐𝑗1
(𝑡𝑐2)𝑦𝑗1 + 𝑛−1𝑉𝜓𝑐𝑗2

(𝑡𝑐2)𝑦𝑗2 + ⋯+ 𝑛−1𝑉𝜓𝑐𝑗𝑛
(𝑡𝑐2)𝑦𝑗𝑛

⋮
𝑛−1𝑉𝜓𝑐𝑗1

(𝑡𝑐𝑛)𝑦𝑗1 + 𝑛−1𝑉𝜓𝑐𝑗2
(𝑡𝑐𝑛)𝑦𝑗2 + ⋯+ 𝑛−1𝑉𝜓𝑐𝑗𝑛

(𝑡𝑐𝑛)𝑦𝑗𝑛]
 
 
 
 

 

=

[
 
 
 
 
𝑛−1𝑉𝜓𝑐𝑗1

(𝑡𝑐1) 𝑛−1𝑉𝜓𝑐𝑗2
(𝑡𝑐1) … 𝑛−1𝑉𝜓𝑐𝑗𝑛

(𝑡𝑐1)

𝑛−1𝑉𝜓𝑐𝑗1
(𝑡𝑐2) 𝑛−1𝑉𝜓𝑐𝑗2

(𝑡𝑐2) … 𝑛−1𝑉𝜓𝑐𝑗𝑛
(𝑡𝑐2)

⋮ ⋮ ⋱ ⋮
𝑛−1𝑉𝜓𝑐𝑗1

(𝑡𝑐𝑛) 𝑛−1𝑉𝜓𝑐𝑗2
(𝑡𝑐𝑛) … 𝑛−1𝑉𝜓𝑐𝑗𝑛

(𝑡𝑐2)]
 
 
 
 

[

𝑦𝑗1

𝑦𝑗2

⋮
𝑦𝑗𝑛

] 

= 𝑻𝑐𝑗𝒚𝑗 (20) 

Next, based on the matrix structure derived in Equation (18) with a single predictor 

variable, the function ℎ𝑗 with 𝑟 predictor variables, where 𝑐 =  1, 2, … 𝑟, can be represented 

as shown in Equation (21). 

𝒉𝑗 = ∑ 𝒉𝑐𝑗

𝑟

𝑐=1

 

= 𝒉1𝑗 + 𝒉2𝑗 + ⋯+ 𝒉𝑟𝑗  

= 𝑻1𝑗𝒚𝑗 + 𝑻2𝑗𝒚𝑗 + ⋯ + 𝑻𝑟𝑗𝒚𝑗 

= (𝑻1𝑗 + 𝑻2𝑗 + ⋯ + 𝑻𝑟𝑗)𝒚𝑗 

= ∑ 𝑻𝑐𝑗𝒚𝑗

𝑟

𝑐=1

 

= 𝑻𝑗𝒚𝑗 

(21) 

where 𝒚𝑗 = [𝑦11 𝑦12 ⋯ 𝑦1𝑛 ⋯ 𝑦𝑚1 𝑦𝑚2 ⋯ 𝑦𝑚𝑛]′ and  

𝑻𝑗 =

[
 
 
 
 
𝑛−1 ∑ 𝑉𝜓𝑐𝑗1

(𝑡𝑐1)
𝑞
𝑐=1 𝑛−1 ∑ 𝑉𝜓𝑐𝑗2

(𝑡𝑐1)
𝑞
𝑐=1 … 𝑛−1 ∑ 𝑉𝜓𝑐𝑗𝑛

(𝑡𝑐1)
𝑞
𝑐=1

𝑛−1 ∑ 𝑉𝜓𝑐𝑗1
(𝑡𝑐2)

𝑞
𝑐=1 𝑛−1 ∑ 𝑉𝜓𝑐𝑗2

(𝑡𝑐2)
𝑞
𝑐=1 … 𝑛−1 ∑ 𝑉𝜓𝑐𝑗𝑛

(𝑡𝑐2)
𝑞
𝑐=1

⋮ ⋮ ⋱ ⋮
𝑛−1 ∑ 𝑉𝜓𝑐𝑗1

(𝑡𝑐𝑛)𝑞
𝑐=1 𝑛−1 ∑ 𝑉𝜓𝑐𝑗2

(𝑡𝑐𝑛)𝑞
𝑐=1 … 𝑛−1 ∑ 𝑉𝜓𝑐𝑗𝑛

(𝑡𝑐𝑛)𝑞
𝑐=1 ]

 
 
 
 

. 

Based on Equation (21), the multiresponse Fourier series function is expressed in matrix 

form as shown in Equation (22). 
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𝒉 = [

𝒉1

𝒉2

⋮
𝒉𝑚

] 

= [

𝑻1𝒚1

𝑻2𝒚2

⋮
𝑻𝑗𝒚𝑗

] 

= [

𝑻1 0 ⋯ 0
0 𝑻2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑻𝑚

] [

𝒚1

𝒚2

⋮
𝒚𝑚

] 

= 𝑻𝑛𝑚×𝑛𝑟𝑚𝒚𝑛𝑟𝑚×1 

(22) 

3.2 Parameter Estimation with Weighted Least Square 

The next step is to use the Weighted Least Square (WLS) method to estimate the 

parameters 𝜷 and 𝜶. The weight matrix 𝑾, a 𝑛𝑚 × 𝑛𝑚 variance-covariance matrix, is 

employed in this procedure. The particular structure of Matrix W is explained as follows: 

𝑾 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 

𝜎1
2 0 ⋯ 0 𝜌𝜎1𝜎2 0 ⋯ 0 ⋯ 𝜌𝜎1𝜎𝑚 0 ⋯ 0

0 𝜎1
2 ⋯ 0 0 𝜌𝜎1𝜎2 ⋯ 0 ⋯ 0 𝜌𝜎1𝜎𝑚 ⋯ 0

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋯ ⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝜎1

2 0 0 ⋯ 𝜌𝜎1𝜎2 ⋯ 0 0 ⋯ 𝜌𝜎1𝜎𝑚

𝜌𝜎2𝜎1 0 ⋯ 0 𝜎2
2 0 ⋯ 0 ⋯ 𝜌𝜎1𝜎𝑚 0 ⋯ 0

0 𝜌𝜎2𝜎1 ⋯ 0 0 𝜎2
2 ⋯ 0 ⋯ 0 𝜌𝜎1𝜎𝑚 ⋯ 0

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋯ ⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝜌𝜎2𝜎1 0 0 ⋯ 𝜎2

2 ⋯ 0 0 ⋯ 𝜌𝜎1𝜎𝑚

⋮ ⋮ ⋱
𝜌𝜎𝑚𝜎1 0 ⋯ 0 𝜌𝜎𝑚𝜎2 0 ⋯ 0 ⋯ 𝜎𝑚

2 0 ⋯ 0

0 𝜌𝜎𝑚𝜎1 ⋯ 0 0 𝜌𝜎𝑚𝜎2 ⋯ 0 ⋯ 0 𝜎𝑚
2 ⋯ 0

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋯ ⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝜌𝜎𝑚𝜎1 0 0 ⋯ 𝜌𝜎𝑚𝜎2 ⋯ 0 0 ⋯ 𝜎𝑚

2 ]
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Equation (22) can be shown in vector and matrix form as follows if Equation (14) provides 

the truncated linear spline regression curve 𝒇, Equation (17) provides the Fourier series 

curve 𝒈, and Equation (21) provides the kernel regression curve 𝒉. 

𝒚 = 𝒇 + 𝒈 + 𝒉 + 𝜺 
𝒚 = 𝑼𝜷 + 𝒁𝜶 + 𝑻𝒚 + 𝜺 

(22) 

where 𝒚 = [𝒚𝟏 𝒚𝟐 … 𝒚𝒎]′ = [𝑦11 𝑦12 ⋯𝑦1𝑛 ⋮ 𝑦21 𝑦22 ⋯𝑦2𝑛 ⋮ 𝑦𝑚1 𝑦𝑚2 ⋯ 𝑦𝑚𝑛]′ and 𝜺 =
[𝜺1 𝜺2 … 𝜺𝑚]′ =  [𝜀11 𝜀12 ⋯𝜀1𝑛 ⋮ 𝜀21 𝜀22 ⋯𝜀2𝑛 ⋮ 𝜀𝑚1 𝜀𝑚2 ⋯𝜀𝑚𝑛]′. Based on Equation (22), 

Equation (23) is obtained. 

𝝐 = 𝒚 − 𝒇 − 𝒈 − 𝒉 
= 𝒚 − 𝑼𝜷 − 𝒁𝜶 − 𝑻𝒚 
= 𝒚∗ −  𝑼𝜷 − 𝒁𝜶 ; 𝒚∗ = (𝑰 − 𝑻)𝒚  

(23) 
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Let 𝑾 be a symmetric positive definite weighting matrix. The WLS estimator  (�̂�, �̂�) is 

the solution to the following minimazation problem: 

𝐦𝐢𝐧
𝜷,𝜶

{𝝐′𝑾𝝐} = 𝐦𝐢𝐧
𝜷,𝜶

{(𝒚∗ −  𝑼𝜷 − 𝒁𝜶)′𝑾(𝒚∗ −  𝑼𝜷 − 𝒁𝜶)} 

Partial parameter derivation is used to optimize using the WLS method. 

𝑸 = 𝜺𝑇𝑾𝜺 
= (𝒚∗ −  𝑼𝜷 − 𝒁𝜶)′𝑾(𝒚∗ −  𝑼𝜷 − 𝒁𝜶) 

= (𝒚∗′
− 𝜷′𝑼′ − 𝜶′𝒁′)

′
(𝑾𝒚∗ −  𝑾𝑼𝜷 − 𝑾𝒁𝜶) 

= 𝒚∗′
𝑾𝒚∗ − 𝒚∗′

𝑾𝑼𝜷 − 𝒚∗′
𝑾𝒁𝜶 − 𝜷′𝑼′𝑾𝒚∗ + 𝜷′𝑼′𝑾𝑼𝜷 + 𝜷′𝑼′𝑾𝒁𝜶

− 𝜶′𝒁′𝑾𝒚∗ + 𝜶′𝒁′𝑾𝑼𝜷 + 𝜶′𝒁′𝑾𝒁𝜶 
= 𝒚∗′𝑾𝒚∗ −  𝟐𝜷′𝑼′𝑾𝒚∗ − 2𝜶′𝒁′𝑾𝒚∗ + 2𝜷′𝑼′𝑾𝒁𝜶 + 𝜷′𝑼′𝑾𝑼𝜷 + 𝜶′𝒁′𝑾𝒁𝜶 

(24) 

Then, the first derivative against β is set to zero as follows. 
𝜕(𝑸)

𝜕𝜷
= 0 

− 𝟐𝑼′𝑾𝒚∗ + 2𝑼′𝑾𝒁�̂� + 𝟐𝑼′𝑾𝑼�̂� = 𝟎 

𝑼′𝑾𝑼�̂� = 𝑼′𝑾𝒚∗ − 𝑼′𝑾𝒁�̂� 
�̂� = (𝑼′𝑾𝑼)−1(𝑼′𝑾𝒚∗ − 𝑼′𝑾𝒁�̂�) 

(25) 

Then, the first derivative of Equation (24) againts 𝜶 is set to zero. 

𝜕(𝑸)

𝜕𝜶
= 0 

− 𝟐𝒁′𝑾𝒚∗ + 2𝒁′𝑾𝑼𝜷 + 𝟐𝒁′𝑾𝒁�̂� = 0 

𝒁′𝑾𝒁�̂� = 𝒁′𝑾𝒚∗ − 𝒁′𝑾𝑼�̂� 

�̂� = (𝒁′𝑾𝒁)−1(𝒁′𝑾𝒚∗ − 𝒁′𝑾𝑼�̂�) 

(26) 

Equations (25) and (26) still contain parameters, so substitution needs to be performed. 

The first step, Equation (25) will be transformed into the following form: 

�̂� = (𝑼′𝑾𝑼)−1(𝑼′𝑾𝒚∗ − 𝑼′𝑾𝒁�̂�) 

�̂� = 𝑪𝒚∗ − 𝑪𝒁 �̂� 
(27) 

where 𝑪 = (𝑼′𝑾𝑼)−1𝑼′𝑾. 
Meanwhile, Equation (26) will be transformed into Equation (28). 

�̂� = (𝒁′𝑾𝒁)−1(𝒁′𝑾𝒚∗ − 𝒁′𝑾𝑼�̂�) 

�̂� = 𝑫𝒚∗ − 𝑫𝑼�̂� 

(28) 

where 𝑫 = (𝒁′𝑾𝒁)−1𝒁′𝑾. 
Then, Equation (27) will be substituted into Equation (28): 

�̂� = 𝑫𝒚∗ − 𝑫𝑼(𝑪𝒚∗ − 𝑪𝒁�̂�) 
�̂� = 𝑫𝒚∗ − 𝑫𝑼𝑪𝒚∗ + 𝑫𝑼𝑪𝒁�̂� 

�̂� − 𝑫𝑼𝑪𝒁�̂� = 𝑫𝒚∗ − 𝑫𝑼𝑪𝒚∗ 
(𝑰 − 𝑫𝑼𝑪𝒁)�̂� = (𝑫 − 𝑫𝑼𝑪)𝒚∗ 

�̂� = (𝑰 − 𝑫𝑼𝑪𝒁)−𝟏(𝑫 − 𝑫𝑼𝑪)𝒚∗ 
�̂� = (𝑰 − 𝑫𝑼𝑪𝒁)−𝟏(𝑫 − 𝑫𝑼𝑪)(𝑰 − 𝑻)𝒚 
�̂� = 𝑨𝒚 

(29) 

with 𝑨 = (𝑰 − 𝑫𝑼𝑪𝒁)−𝟏(𝑫 − 𝑫𝑼𝑪)(𝑰 − 𝑻). 
Then, Equation (29) can be substituted into Equation (27): 
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�̂� = 𝑪𝒚∗ − 𝑪𝒁�̂� 

�̂� = 𝑪𝒚∗ − 𝑪𝒁((𝑰 − 𝑫𝑼𝑪𝒁)−𝟏(𝑫 − 𝑫𝑼𝑪)𝒚∗) 

�̂� = (𝑪 − 𝑪𝒁((𝑰 − 𝑫𝑼𝑪𝒁)−𝟏(𝑫 − 𝑫𝑼𝑪))) 𝒚∗ 

�̂� = (𝑪 − 𝑪𝒁((𝑰 − 𝑫𝑼𝑪𝒁)−𝟏(𝑫 − 𝑫𝑼𝑪))) (𝑰 − 𝑻)𝒚 

�̂� = 𝑩𝒚 

(30) 

with 𝑩 = (𝑪 − 𝑪𝒁((𝑰 − 𝑫𝑼𝑪𝒁)−𝟏(𝑫 − 𝑫𝑼𝑪))) (𝑰 − 𝑻). 

The mixed estimator of truncated spline, Fourier series, and kernel is derived as follows 

using the outcomes of Equations (29) and (30). 

�̂� =  �̂� + �̂� + �̂� 
= 𝑼�̂� + 𝒁�̂� + 𝑻𝒚 
= 𝑼𝑩𝒚 + 𝒁𝑨𝒚 + 𝑻𝒚 
= 𝑬𝒚 

(31) 

with 𝑬 = 𝑼𝑩 + 𝒁𝑨 + 𝑻. 

 
3.3 Application of Mixed Estimator Model to Poverty Index Data 

Before modeling using multi-response nonparametric regression analysis, the Pearson 

correlation value between response variables was first calculated, as shown in Table 2 

below. 
Table 2. Pearson Correlation Each Responses 

 𝑦1 𝑦2 𝑦3 

𝑦1 1 0.864 0.676 

𝑦2 0.864 1 0.942 

𝑦3 0.676 0.942 1 

 

The correlation between response variables is very high. This finding indicates that the 

three response variables are significantly correlated with each other and this needs to be 

considered in the construction of a multi-response model. To observe the relationship 

pattern between the three response variables and each predictor variable, it can be done 

through scatterplot visualization. The scatterplot graph that describes the relationship 

between each response variable and each predictor variable is presented in Figure 1-3. 

 

 
Figure 1. Scatterplot Percentage of Poor People (𝑌1) with Each Predictors 
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Figure 2. Scatterplot Poverty Depth Index (𝑌2) with Each Predictors 

 

 
Figure 3. Scatterplot Poverty Severity Index (𝑌3) with Each Predictors 

 

The response variable 𝑌1 exhibits a clear negative relationship with predictors 𝑋1 and 𝑋2, 

particularly strong with 𝑋2, while its association with 𝑋3 lacks a discernible pattern. For 

𝑌2, there is a general decreasing trend with 𝑋1 and 𝑋2, though less pronounced than in 𝑌1, 

and a slight upward trend with 𝑋3, although non-linear. In contrast, 𝑌3 shows no 

consistent relationship with any of the predictors, with most values concentrated in a low 

and narrow range. 
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Table 3. Summary of GCV values every configuration model 

Model 

Variables 
Number 

of Knots 

Number of 

Oscillations 
GCV Truncated 

Spline 

Fourier 

Series 

Kernel 

A.1 𝑋1 𝑋2 𝑋3 1 1 1.899 

2 2 1.814* 

A.2 𝑋1 𝑋3 𝑋2 1 1 2.475 

2 2 2.632 

A.3 𝑋2 𝑋1 𝑋3 1 1 3.538 

2 2 3.452 

A.4 𝑋2 𝑋3 𝑋1 1 1 3.505 

2 2 3.590 

A.5 𝑋3 𝑋2 𝑋1 1 1 2.369 

2 2 2.119 

A.6 𝑋3 𝑋1 𝑋2 1 1 1.997 

2 2 1.888 

B 𝑋1, 𝑋2, 𝑋3   1  140.310 

2  148.764 

C  𝑋1, 𝑋2, 𝑋3   1 699.812 

 2 786.152 

D   𝑋1, 𝑋2, 𝑋3   160.181 

*The Smallest Value GCV 

 

The table presents the Generalized Cross Validation (GCV) results for multiple 

nonparametric regression models involving various configurations of truncated spline, 

Fourier series, and kernel estimators. Models A.1 through A.6 represents hybrid 

structures, each combining one variable for truncated spline, one for Fourier series, and 

one for kernel smoothing, with evaluations conducted under two settings of model 

complexity: 1 knot with 1 oscillation, and 2 knots with 2 oscillations. Among these, Model 

A.1 demonstrates the best performance with a GCV of 1.814, indicating that the 

configuration with 𝑋1 as truncated spline, 𝑋2 as Fourier series, and 𝑋3 as kernel yields the 

most accurate and parsimonious fit. This model yields a coefficient of determination (𝑅2) 

of 94.066%. Due to the satisfactory result of 𝑅2, it can be said that the proposed model is 

able to describe the variance of the response variable through the predictor variables 

exceptionally well. The mixed estimator’s superiority stems from its adaptability: splines 

capture local trends in 𝑋1 (life expectancy), Fourier series model periodicity in 𝑋2
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(education), and kernel smooth noisy 𝑋3 (labor data). This synergy reduces overfitting 

(variance) while maintaining sensitivity to localized patterns (bias). Figure 4 further 

validates the model's accuracy by comparing actual and predicted values for each 

response variable, demonstrating a close alignment with minimal residuals. 

 

In contrast, Models B, C, and D represent homogeneous basis structures: Model B applies 

truncated spline to all predictors, Model C uses only Fourier series, and Model D uses 

only kernel estimators. These models produce significantly higher GCV values, with 

Model C showing the poorest performance (𝐺𝐶𝑉 =  699.812 and 786.152), followed by 

Model D (𝐺𝐶𝑉 =  160.181), and Model B (𝐺𝐶𝑉 =  140.310 and 148.764). The results 

indicate that fully homogeneous basis configurations are substantially less effective than 

mixed-basis models in capturing the structure of the data, reaffirming the advantage of 

selectively assigning basis functions based on variable characteristics. 

 

Based on the parameter estimation results for each response variable for the 2024 Poverty 

Index data of East Java, the multiresponse nonparametric regressionmodel with a 

combined truncated spline, Fourier series, and kernel estimator can be written as. 

�̂�1𝑖 = 10.037 + 0.095𝑢𝑖 − 24.221(𝑢𝑖 − 6.422)+ + 24.53(𝑢𝑖 − 6.457)+ + 0.177𝑧𝑖

+
1

2
3.236 × 10−11 + 0.137𝑐𝑜𝑠 𝑧𝑖 − 0.047𝑐𝑜𝑠 2𝑧𝑖 + 𝑛−1 ∑𝑉𝜓1𝑜(𝑡𝑖)𝑦1𝑜

38

𝑜=1

+ 𝜖1𝑖 
(31) 

Where 𝑉𝜓1𝑜 = [
𝐾(

𝑡−𝑡𝑜
0.503

)

∑ 𝐾(
𝑡−𝑡𝑗

0.503
)38

𝑗=1

] 

�̂�2𝑖 = 0.075 + 0.028𝑢𝑖 − 3.978(𝑢𝑖 − 6.457)+ + 4.003(𝑢𝑖 − 6.493)+ + 0.035𝑧𝑖

+
1

2
5.921 × 10−13 + 0.021𝑐𝑜𝑠 𝑧𝑖 + 0.025𝑐𝑜𝑠 2𝑧𝑖 + 𝑛−1 ∑𝑉𝜓2𝑜(𝑡𝑖)𝑦2𝑜

38

𝑜=1

+ 𝜖2𝑖 
(32) 

Where 𝑉𝜓2𝑜 = [
𝐾(

𝑡−𝑡𝑜
0.653

)

∑ 𝐾(
𝑡−𝑡𝑗

0.653
)38

𝑗=1

] 

 

�̂�3𝑖 = 0.012 + 0.002𝑢𝑖 − 0.343(𝑢𝑖 − 6.493)+ + 0.351(𝑢𝑖 − 6.528)+ + 0.146𝑧𝑖

+
1

2
1.308 × 10−12 + 0.012𝑐𝑜𝑠 𝑧𝑖 + 0.031𝑐𝑜𝑠 2𝑧𝑖 + 𝑛−1 ∑ 𝑉𝜓2𝑜(𝑡𝑖)𝑦3𝑜

38

𝑜=1

+ 𝜖3𝑖 

(33) 

Where 𝑉𝜓3𝑜 = [
𝐾(

𝑡−𝑡𝑜
0.64

)

∑ 𝐾(
𝑡−𝑡𝑗

0.64
)38

𝑗=1

] 
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Figure 4. Actual vs Predicted Every Response 

 

The results confirm that the mixed estimator model provides more accurate and reliable 

estimates than homogeneous basis models. This advantage stems from its ability to assign 

appropriate estimation methods based on each predictor’s data pattern. However, the 

proposed model is not without limitations. First, it is computationally more demanding, 

especially when optimizing over multiple parameter spaces (e.g., knot numbers, harmonic 

orders, bandwidths). Second, the efficiency of the parameter tuning approach is crucial to 

the model's performance; mistakes in knot or bandwidth selection could weaken the 

estimator's reliability. 

 

Moreover, this method may be sensitive to multicollinearity among predictor variables if 

not addressed carefully in the weighting matrix. Despite these challenges, the mixed 

estimator provides a flexible and adaptable modeling framework. It is particularly 

suitable for practitioners analyzing complex multivariate systems where traditional 

univariate or homogeneous regression approaches fall short. 

 

4. CONCLUSIONS  

Based on the previously conducted analysis, Weighted Least Sqaure (WLS) optimization 

is used to obtain the multiresponse nonparametric regression model with a mixed 

truncated spline, fourier series and kernel estimator. 
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�̂� =  �̂� + �̂� + �̂� 

= 𝑼�̂� + 𝒁�̂� + 𝑻𝒚 

= 𝑼𝑩𝒚 + 𝒁𝑨𝒚 + 𝑻𝒚 

= 𝑬𝒚 

with 𝑬 = 𝑼𝑩 + 𝒁𝑨 + 𝑻. 

The proposed mixed estimator provides a robust framework for multiresponse 

nonparametric regression, combining the strengths of truncated spline, Fourier series, 

and kernel methods. Its adaptability to diverse data patterns makes it particularly 

valuable for applications in economics, public health, and environmental science, where 

multivariate outcomes are common. However, the model's computational complexity and 

sensitivity to parameter tuning remain challenges. Future research could explore 

adaptive weighting mechanisms and extensions to dynamic or high-dimensional data 

5. RECOMMENDATIONS 

Based on the findings of this study, several recommendations can be proposed to enhance 

the applicability and robustness of the mixed nonparametric regression model. First, 

incorporating an adaptive weighting mechanism to determine the relative contribution of 

truncated spline, Fourier series, and kernel components based on the underlying data 

characteristics could improve model flexibility and reduce the risk of overfitting. Second, 

the model’s performance heavily depends on the selection of tuning parameters such as 

knot placement, harmonic order, and kernel bandwidth; thus, implementing cross-

validation techniques such as generalized cross-validation is strongly recommended for 

optimal parameter selection. Third, given the static nature of the current formulation, 

extending the model to accommodate spatiotemporal or longitudinal data structures 

would increase its relevance for real-world applications involving dynamic multiresponse 

phenomena. These enhancements would further strengthen the model’s capacity to 

capture complex response-predictor relationships across various domains. 
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