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Abstract 

This study examines interval estimation in truncated spline nonparametric regression using 

simulated data. The study aims to determine the impact of sample size, variance, and knot points 

on the performance of the truncated spline estimator. The results show that as the sample size 

increases, both the Generalized Maximum Likelihood (GML) and Mean Square Error (MSE) values 

decrease, while the coefficient of determination increases. This study also reveals that increasing 

the variance leads to higher GML and MSE values, as well as a lower coefficient of determination. 

Furthermore, the truncated spline nonparametric regression model achieves optimal performance 

with three knot points. The results showed that the more knot points, the GML and MSE values 

will decrease, while the coefficient of determination increases. The results of this study show that 

the determination of sample size, variance, and knot points significantly affects the accuracy and 

efficiency of the truncated spline nonparametric regression model, allowing it to serve as a 

reference for applying truncated spline nonparametric regression more effectively to produce a 

more optimal model that aligns with the characteristics of the data. 

Keywords: GML; interval estimation; nonparametric regression; simulation study; spline 

truncated 

 

Abstrak 

Penelitian ini mengkaji terkait estimasi interval pada regresi nonparametrik spline truncated 

menggunakan data simulasi. Penelitian bertujuan untuk mengetahui dampak jumlah data, 

variansi, dan titik knot terhadap kinerja estimator spline truncated. Hasil penelitian 

menunjukkan dampak ketika jumlah data yang digunakan semakin besar, maka nilai Generalized 

Maximum Likelihood (GML) dan Mean Square Error (MSE) semakin menurun, sedangkan nilai 

koefisien determinasi semakin meningkat. Penelitian ini juga menunjukkan dampak ketika nilai 

variansi ditingkatkan, maka akan meningkatkan nilai GML dan MSE serta menurunkan nilai 

koefisien determinasi. Selain itu, diperoleh jumlah titik knot optimal pada model regresi 

nonparametrik spline truncated dengan tiga titik knot. Hasil penelitian menunjukkan bahwa 

semakin banyak titik knot, maka nilai GML dan MSE akan semakin menurun, sedangkan nilai 

koefisien determinasi semakin meningkat. Hasil dari penelitian ini memberikan gambaran bahwa 

penentuan jumlah data, variansi, dan titik knot sangat mempengaruhi akurasi dan efisiensi model 

regresi nonparametrik spline truncated, sehingga dapat menjadi acuan dalam penerapan regresi 

nonparametrik spline truncated secara lebih efektif agar menghasilkan model yang lebih optimal 

dan sesuai dengan karakteristik data. 

Kata Kunci:  estimasi interval; GML; regresi nonparametrik; studi simulasi; spline truncated 
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1. INTRODUCTION 

Nonparametric regression is a regression analysis approach that helps to identify the 

relationship patterns between predictor and response variables without any prior 

information about the shape of the regression curve. (Sifriyani et al., 2023). The strength 

of nonparametric regression lies in exceptional flexibility, which allows the data to 

independently determine the shape of the regression curve on its own, without the 

influence of the researcher’s biases (Ni’matuzzahroh & Dani, 2024). The nonparametric 

regression method has led to the creation of various estimators, including the truncated 

spline, kernel, Fourier series, and polynomial (Octavanny et al., 2021).  

Currently, the truncated spline estimator is gaining popularity due to its flexibility. The 

truncated spline estimator is a polynomial function with a segmented nature over specific 

intervals (Adrianingsih et al., 2025). Knot points serve as junctions that indicate changes 

in data patterns over different intervals (Prawanti et al., 2019). Determining the optimal 

knot points is a crucial step in truncated spline nonparametric regression, too few knot 

points can make the model less capable of capturing complex data patterns. Conversely, 

too many knot points make the model overly complex, increasing the risk of overfitting 

(Dani et al., 2024). A method that can be utilized to find the optimal knot points is 

Generalized Maximum Likelihood (GML) (Wang, 1998). Several previous studies have 

implemented the truncated spline nonparametric regression approach, including research 

by (Nurcahayani et al. (2019), Dani et al. (2021), and Kuswanto et al. (2022). However, 

these studies are restricted to point estimation, which has limitations in delivering precise 

information about population parameters. To overcome this limitation, this study will 

expand point estimation by employing interval estimation. 

Interval estimation expands upon point estimation by providing an estimated parameter 

value that is not limited to a single point but rather includes a range with lower and upper 

bounds (Suprapto, 2018). Interval estimation is considered stronger than point estimation 

because there is an interval in the parameter value used to estimate the population 

(Islamiyati et al., 2022). Previous studies that used interval estimation in truncated spline 

regression modeling include studies conducted by (Suprapto (2018), (Islamiyati et al. 

(2022), and (Setyawati et al. (2022). This study will focus on the interval estimation of 

truncated spline nonparametric regression using simulated data. Simulated data is 

preferred because it can produce a range of controlled conditions, allowing researchers to 

evaluate the estimation method’s performance free from external influences. Previous 

studies that used simulated data in the truncated spline nonparametric regression 

approach include research conducted by Sudiarsa (2019), Dani et al. (2021), and Ratnasari 

et al. (2021). 

Based on the provided explanation, this study focuses on interval estimation in truncated 

spline nonparametric regression using simulated data. Interval estimation provides 

additional information in the form of a confidence interval that is believed to contain the 
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true value, thereby supporting more accurate decision-making. The study aims to 

determine the impact of the sample size, variance, and knot points used on the 

performance of the truncated spline estimator. The outcomes of this study are expected 

to act as a reference to enrich scientific insight and knowledge related to the use of 

truncated spline nonparametric regression with simulated data. 

2.  RESEARCH METHOD  

2.1 Truncated Spline Nonparametric Regression 

Nonparametric regression represents an approach in regression analysis that is utilized 

to detect patterns of relationships between predictor and response variables without any 

prior assumptions about the shape of the regression curve (Fitriyani et al., 2021). The 

most prevalent nonparametric regression estimator is the truncated spline, which can 

efficiently manage data characteristics that change across specific sub-intervals. Its 

advantages include strong visual and statistical interpretation, along with significant 

flexibility (Adrianingsih et al., 2021). The truncated spline function of order m  and knot 

points 1 2, , , rk k k  is written in Equation (1). 

( ) ( )0

1 1

m r
m

j

i j i m q i q

j q

g x x x k   + +
= =

= + + −   (1) 

The truncated function is given by Equation (2). 
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where   is the estimated model parameter, k  is the knot point denoted by r  (Husain et 

al., 2021). Nonparametric regression that includes one response variable and multiple 

predictor variables is known as multivariable truncated spline nonparametric regression. 

The multivariable truncated spline nonparametric regression model is presented in 

Equation (3). 
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where 
iy  is the response variable, j

six  is the predictor variable,   is the regression parameter 

coefficient, k  is knot point, and  is residual (Widyastuti et al., 2021). 

 

 

 

 

2.2 Generalized Maximum Likelihood 

The Generalized Maximum Likelihood (GML) method is applicable for selecting optimal 

knot points in truncated spline nonparametric regression and is particularly useful for 

handling correlated data (Wang, 1998). The formula for determining the number of knot 

points with the GML method is written in Equation (4). 
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2.3 Point Estimation of Truncated Spline Nonparametric Regression 

A technique for estimating parameter values is known as Maximum Likelihood 

Estimation (MLE). Adrianingsih & Dani (2021) explain that the MLE method can be used 

if the distribution of the residual is known. The MLE method is performed by assuming 

the residuals 
2~ IIDN(0, )i  . The probability function of i  is written in Equation (5) 

(Setiawan et al., 2017). 
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Equation (5) is the Normal distribution function of the residuals that forms the basis for 

forming the likelihood function in Equation (6). 
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The likelihood function in Equation (6) forms the basis for parameter estimation under 

the assumption that the residuals are normally distributed. Then, by performing a 

logarithmic transformation, Equation (7) obtained. 

( )2 2
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Next, by using partial derivatives, estimates for the parameters are obtained as in 

Equation (8). 
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2.4 Interval Estimation of Truncated Spline Nonparametric Regression 

Interval estimation is achieved once the pivotal quantity for ˆ , 1,2, ,i i n=g (x)  has been 

determined. The pivotal quantity is formed by transforming as in Equation (9). 
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In the condition where the population variance is unknown, the variance is estimated 

using the Mean Square Error (MSE) so that Equation (10) is obtained. 

( )
( )

ˆ ( )i i
i

ii

g g
Q

MSE

−
=

(x) x
x,y

H(k)
 (10) 

Then, the pivotal quantity is obtained as shown in Equation (11). 
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Equation (11) shows the pivotal quantity used to construct the confidence interval, so that 

the shortest interval estimation can be constructed as in Equation (12). 
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Equation (12) shows the lower and upper limits of the confidence interval containing the 

true value with confidence level of 1 −  (Suprapto, 2018). 

3.  RESULT AND DISCUSSION  

3.1 Data Description 

Simulated data were generated with sample sizes ( n ) of 50, 100, 150, 250, and variance
2( )  of 0.01, 0.25, 0.50, 0.75, 1. Residuals were set to follow a Normal distribution 

( )2~ 0,N   with predictor variables 1x  and 2x   following a Uniform distribution 

( )~ 0,1x Unif . The mathematical function used to determine the shape of the regression 

curve is a trigonometric function written in Equation (15). 
5 6

2 4

sin(3 ) sin( )
( )

sin( ) sin( )

x x
g x

x x

 
= +  (15) 

3.2 Scatter Plot 

In the process of implementing truncated spline nonparametric regression modeling, the 

first step is to establish the relationship pattern between the predictor and response 

variables, which can be illustrated with a scatter plot. For example, scatter plots when 

the conditions are set to 250n =  and 
2 0.01 =  are presented in Figure 1. 

 

Figure 1. Scatter plot for 250n =  and 2 0.01 =  

The impact of the simulation can be seen by comparing the scatter plot with other 

conditions. For example, scatter plots when the conditions are set 250n =  and 
2 1 =  

presented in Figure 2. 
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Figure 2. Scatter plot for 250n =  and 2 1 =  

A comparison of Figures 1 and 2 shows that increasing variance results in a wider 

dispersion of data points. Additionally, the observed data pattern is consistent with the 

properties of the truncated spline estimator, which varies at specific sub-intervals.  

3.3 Simulation Study 

This simulation study aimed to assess the performance of the truncated spline estimator 

under various predetermined data conditions. Simulation data were generated based on 

several characteristics, including sample size, variance, and knot points. The simulation 

was conducted over 10 iterations with the performance of the method evaluated based on 

changes in the average GML, 2R , dan MSE values. After conducting the simulation using 

a nonparametric truncated spline regression model with 1, 2, and 3 knot points, the 

results were obtained and presented in Table 1, Table 2, and Table 3. 

Table 1. Simulation Results using 1 Knot Point 

Sample 

Size 
Criteria 

Variance 

0.01 0.25 0.50 0.75 1 

50 

GML 19.9058 25.8147 31.8263 38.0793 43.4248 
2R  0.5237 0.4640 0.4042 0.3471 0.3255 

MSE 0.6044 0.7773 0.9878 1.2286 1.4021 

100 

GML 3.2268 4.4805 5.7430 6.8468 8.1067 
2R  0.5617 0.4633 0.3712 0.2964 0.2686 

MSE 0.5505 0.7823 1.0560 1.3277 1.5714 

150 

GML 1.7262 2.4370 3.1500 3.7972 4.5443 
2R  0.6115 0.5351 0.4752 0.4337 0.3836 

MSE 0.5370 0.7580 0.9808 1.1827 1.4372 

250 

GML 1.0276 1.4710 1.9391 2.4209 2.8761 
2R  0.5837 0.4956 0.4277 0.3721 0.3358 

MSE 0.5176 0.7407 0.9763 1.2187 1.4496 
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Table 2. Simulation Results using 2 Knot Point 

Sample 

Size 
Criteria 

Variance 

0.01 0.25 0.50 0.75 1 

50 

GML 25.6811 65.3969 92.3335 115.7423 137.0197 
2R  0.9095 0.7119 0.5491 0.4907 0.4148 

MSE 0.1118 0.4161 0.7628 0.9757 1.2336 

100 

GML 1.3982 4.1614 6.9688 9.4719 11.9385 
2R  0.9096 0.7708 0.6530 0.5246 0.4123 

MSE 0.1120 0.3335 0.5854 0.8983 1.2568 

150 

GML 0.6181 1.6717 2.7612 3.7931 4.8990 
2R  0.9129 0.7992 0.7109 0.6416 0.5845 

MSE 0.1192 0.3261 0.5386 0.7460 0.9670 

250 

GML 0.3281 0.9163 1.5295 2.1351 2.7530 
2R  0.8981 0.7599 0.6557 0.5775 0.5061 

MSE 0.1256 0.3506 0.5850 0.8174 1.0756 

Table 3. Simulation Results using 3 Knot Point 

Sample 

Size 
Criteria 

Variance 

0.01 0.25 0.50 0.75 1 

50 

GML 57.4934 195.7574 291.8006 365.9275 442.4757 
2R  0.9590 0.7220 0.6438 0.5235 0.4839 

MSE 0.0509 0.4017 0.5988 0.8953 1.0698 

100 

GML 1.2490 6.1897 10.6881 14.8556 19.1152 
2R  0.9606 0.7930 0.6833 0.5912 0.5223 

MSE 0.0480 0.3002 0.5328 0.7750 1.0308 

150 

GML 0.4623 2.0447 3.5482 4.9109 6.4057 
2R  0.9585 0.8349 0.7366 0.6548 0.5944 

MSE 0.0574 0.2680 0.4908 0.7199 0.9459 

250 

GML 0.1884 0.9233 1.6583 2.3747 3.0834 
2R  0.9549 0.8077 0.6931 0.6051 0.5387 

MSE 0.0555 0.2806 0.5204 0.7631 1.0026 

3.1.1 Simulation Based on Sample Size 

Sample size is one of the important factors that can affect the validity of simulation 

results. The impact of varying sample sizes is visualized in Figure 3, where the variance 

value is set at 0.01. 

 
(a) GML value 

 
(b) 

2R value 
 

(c) MSE value 

Figure 3. Visualization of the impact of sample size 
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Figure 3 shows that the sample size affects the performance of the truncated spline. The 

larger the sample size, the GML and MSE values tend to decrease, reflecting more 

efficient knot point selection and smaller prediction errors. The 2R  value generally 

increases, indicating a better model fit, although a slight decrease occurs at the sample 

size of 250, possibly due to noise interference in the larger data 

3.1.2 Simulation Based on Variance  

The impact of different variances on the performance of truncated spline nonparametric 

regression can be visualized in Figure 4, where the sample size is set at 250. 

 
(a) GML value 

 
(b) 2R value 

 
(c) MSE value 

Figure 4. Visualization of the impact of variance 

The simulation results in Figure 4 show that data variance affects the performance of the 

truncated spline. When the variance increases, the GML and MSE values increase, 

indicating an increase in model complexity and the magnitude of prediction errors. 

Meanwhile, the decreasing value of 2R  indicates that the model’s ability to explain data 

variation is diminishing. 

3.1.3 Simulation Based on Knot Points 

The impact of knot points is visualized in Figure 5, where the sample size is set at 250 

and the variance is set at 0.01. 

 
(a) GML value 

 
(b) 

2R value 
 

(c) MSE value 

Figure 5. Visualization of the impact of knot points 
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Figure 5 shows that the number of knot points affects the performance of the truncated 

spline. As the number of knot points increases, the GML and MSE values tend to decrease, 

indicating the model becomes more flexible and accurate in capturing data patterns. The 

increasing 2R  value suggests an improved model fit. The addition of more knot points 

makes the model more flexible in adjusting to data patterns, but it should be noted that 

too many knot points can increase the risk of overfitting, so selecting the optimal number 

of knot points is a crucial step in the truncated spline nonparametric regression. 

3.4 Interval Estimation 

According to the simulation results, the truncated spline nonparametric regression model 

with 3 knot points exhibits the smallest GML value, so this model will be used in the 

interval estimation process for parameters and the regression curve. For example, the 

interval estimation results for parameters and the regression curve under the condition 

of 50n =  with 2 0.01 =  are shown in Table 4 and Table 5. 

Table 4. Parameter Interval Estimation for 50n =  and 2 0.01 =  

Variable Parameter 
Parameter Point 

Estimation 

Parameter Interval Estimation 

Lower Limit Upper Limit 

Constant 
0̂  -0.0969 -0.8872 0.6933 

1x  

11̂  1.4588 0.2836 2.6339 

12̂  2.0919 1.1004 3.0835 

13̂  -134.6485 -182.5210 -86.7759 

14̂  293.9488 180.4334 407.4642 

2x  

21̂  -214.6621 -331.8991 -97.4250 

22̂  8.8144 -18.6430 36.2717 

23̂  -32.6829 -95.9357 30.5699 

24̂  -28.7695 -124.9665 67.4274 

Table 5. Regression Curve Interval Estimation for 50n =  and 2 0.01 =   

Actual Regression 

Curve 

Regression Curve 

Point Estimation 

Regression Curve Interval Estimation 

Lower Limit Upper Limit 

2.6024 2.5178 1.9960 3.0396 

2.1743 2.0722 1.6108 2.5337 

0.6311 1.0629 0.7179 1.4078 

0.9615 1.2464 0.9429 1.5500 

    

0.1882 0.2401 -0.3717 0.8520 

Subsequently, a comparison is made between the point estimates and the interval 

estimates to assess whether the point estimate falls within the interval estimate range. 

The comparison results are visualized in Figure 6. 
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Figure 6. Visualization of interval estimation for 50n =  and 2 0.01 =  

The same procedure was applied to each combination of sample size and variance. 

Another example of interval estimation under different conditions is shown in Figure 7. 

 
Figure 7. Visualization interval estimation for 250n =  and 2 0.01 =  

Figure 6 and Figure 7 show that the point estimates consistently fall within the interval 

bounds, indicating the model’s ability to capture underlying data patterns. As the sample 

size increases, the narrower the interval becomes, which means the estimation error 

decreases and precision increases. Conversely, with high variance, the interval widens 

due to increased uncertainty from noise, indicating that the model is quite sensitive to 

data disturbances. Overall, the results of this study indicate that data characteristics 

such as the sample size, variance, and knot points significantly affect the accuracy and 

precision of the performance of the truncated spline estimator, including its interval 

estimation results. These findings can serve as a reference for applied research in 

determining the appropriate data conditions for applying truncated spline nonparametric 

regression to obtain a more optimal model and reliable estimates. 

4.  CONCLUSION 

Based on the results of the analysis and discussion, conclusions were drawn by the 

research objectives. The simulation results demonstrate the impact of varying sample 
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sizes on the performance of the truncated spline. Specifically, as the sample size increases, 

the GML and MSE values decrease while 2R  increases. This indicates that with larger 

datasets, the model becomes more efficient in determining the optimal number of knot 

points and is better able to explain the overall variation in the data, thereby reducing 

prediction errors. 

The impact of increased variance is that the GML and MSE values increase while 2R  

decreases. The increase in GML value indicates that the model becomes more complex in 

determining the optimal knot points, but the decrease in 2R  value and the increase in 

MSE value indicate that the model becomes less capable of explaining the more dispersed 

data variation and less effective in producing accurate predictions. 

The truncated spline nonparametric regression model achieves optimal performance with 

3 knots. The impact of the knots on the performance of the truncated spline is that when 

the number of knots is increased, the GML and MSE values decrease, while the 2R  value 

increases. This indicates that a model with more knots is more flexible in adapting to 

complex data patterns, thereby better explaining the variability in the data and providing 

predictions with higher accuracy. 

5.  RECOMMENDATION 

This study is limited to the use of only 1, 2, and 3 knot points. Therefore, future studies 

are recommended to explore a combination of knot points to obtain more accurate and 

flexible estimation results in representing the relationship patterns between variables. 
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