

Mandalika Mathematics and Education Journal

Volume 7 Nomor 3, September 2025 e-ISSN 2715-1190 | |p-ISSN 2715-8292 DOI: http://dx.doi.org/10.29303/jm.v7i3.9944

Evaluasi Penerapan Realistic Mathematics Education Berbantuan GeoGebra Terhadap Pemahaman Konsep Matematis Menggunakan Model CIPP

Farizal Ramadhan¹, Ali Mahmudi^{2*}, M. Tata Aulia Rahman³

- ¹ Universitas Negeri Yogyakarta, Yogyakarta, Indonesia
- ² Universitas Negeri Yogyakarta, Yogyakarta, Indonesia
- ³ Universitas Negeri Yogyakarta, Yogyakarta, Indonesia

farizalramadhan.2023@student.uny.ac.id

Abstract

The purpose of this study is to evaluate the effectiveness of using the Realistic Mathematics Education (RME) approach assisted by GeoGebra in teaching mathematics at a public junior high school in the city center. To assess the extent to which the implementation of RME meets the desired learning standards, the CIPP model (Context, Input, Process, Product) was applied. Data were collected through interviews, observations, and document analysis, and analyzed using a descriptive-evaluative method. The findings reveal that the implementation of RME assisted by GeoGebra generally meets the required criteria. The context component reached 100%, input 80%, while the process and product components achieved 85% and 100%, respectively, all of which are categorized as highly appropriate. Nevertheless, several challenges were identified, including limited internet access for using GeoGebra, the lack of professional certification among some teachers, and less-than-ideal instructional time. Overall, the RME approach assisted by GeoGebra proved effective in enhancing students' conceptual understanding of mathematics, particularly on the topic of three-dimensional shapes such as cubes and rectangular prisms. The average score of students' conceptual understanding increased significantly from 47.76% in the pretest to 80.29% in the posttest, with the indicator "restating a concept" showing the highest improvement at 93.27%.

Keywords: CIPP Model Evaluation; GeoGebra; Realistic Mathematics Education

Abstrak

Tujuan dari penelitian ini adalah untuk mengevaluasi seberapa efektif penggunaan pendekatan Realistic Mathematics Education (RME) berbantuan GeoGebra dalam pengajaran matematika di salah satu SMP Negeri di tengah kota. Untuk mengevaluasi sejauh mana pelaksanaan RME memenuhi standar pembelajaran yang diinginkan, model CIPP (Context, Input, Process, Product) digunakan. Data dikumpulkan melalui wawancara, observasi, dan analisis dokumen. Metode deskriptif evaluatif digunakan untuk mengumpulkan data. Hasil penelitian menunjukkan bahwa penggunaan RME berbantuan GeoGebra secara umum memenuhi persyaratan. Komponen konteks mencapai 100%, input 80%, dan komponen proses dan produk masing-masing mencapai 85% dan 100%, masing-masing dianggap sangat sesuai. Namun, beberapa tantangan juga ditemukan dalam penelitian ini. Ini termasuk keterbatasan akses internet untuk menggunakan GeoGebra, kurangnya sertifikasi profesi guru pada beberapa mata pelajaran, dan waktu pembelajaran yang tidak ideal. Meskipun demikian, pendekatan RME berbantuan GeoGebra terbukti efektif dalam meningkatkan pemahaman konsep matematika siswa, terutama pada materi bangun ruang sisi datar seperti kubus dan balok. Skor rata-rata pemahaman siswa sebelum tes adalah 47,76%, yang meningkat secara signifikan menjadi 80,29% setelah tes, dengan indikator "menyatakan ulang konsep" mencapai peningkatan tertinggi sebesar 93,27%.

Kata Kunci: Evaluasi Model CIPP; GeoGebra; Realistic Mathematics Education

1. PENDAHULUAN

Matematika adalah salah satu mata pelajaran yang diajarkan mulai dari sekolah dasar hingga perguruan tinggi. Tujuan utama dari pelajaran matematika menurut *National Council of Teachers of Mathematics* (NCTM) adalah untuk membantu siswa memahami konsep-konsep dasar, memahami bagaimana konsep-konsep tersebut berkaitan, dan mampu menggunakan konsep-konsep tersebut dengan tepat dan efektif untuk menyelesaikan masalah (NCTM, 2000). Ini mengingat fakta bahwa matematika sangat terkait dengan kehidupan sehari-hari, mulai dari perdagangan, perbelanjaan, mengukur tinggi badan, maupun tabel atau diagram saat membaca informasi dan lain sebagainya (Haigh, 2019; Sutherland, 2007).

Salah satu tujuan utama pembelajaran matematika adalah agar siswa mampu memahami konsep-konsep matematika secara mendalam. Pemahaman konseptual merujuk pada kemampuan siswa dalam menafsirkan, mengintegrasikan, dan menghubungkan konsep, operasi, serta relasi matematika secara akurat, efektif, fleksibel, dan menyeluruh. Jenis pemahaman ini menjadi landasan penting untuk mengembangkan kelancaran prosedural, yaitu kemampuan menerapkan prosedur secara bermakna dan adaptif dalam menyelesaikan masalah (Kilpatrick et al., 2001; NCTM, 2014). Capaian pembelajaran matematika sebagaimana tercantum dalam dokumen Badan Standar Kurikulum dan Asesmen Pendidikan (BSKAP) No. 033 Tahun 2022 menyebutkan bahwa siswa yang mampu menjelaskan konsep dengan bahasanya sendiri, memahami maksud soal, serta dapat menjelaskan kembali materi kepada teman dan menggunakan konsep tersebut dalam pemecahan masalah, dikategorikan telah memiliki pemahaman matematis yang baik (BSKAP, 2022).

Penerapan pendekatan Realistic Mathematics Education (RME) dalam pembelajaran matematika terbukti mampu meningkatkan pemahaman konsep matematis siswa (Mulyawati & Umam, 2019; Kairuddin et al., 2024). Pendekatan ini dirancang untuk membantu siswa memahami konsep-konsep matematika secara lebih mendalam, khususnya pada materi bangun ruang sisi datar. Dalam pelaksanaannya, RME menekankan penggunaan konteks yang relevan untuk menjembatani konsep abstrak sehingga lebih bermakna dan mudah dipahami. Melalui konteks nyata, siswa dapat menghubungkan materi yang dipelajari dengan situasi kehidupan sehari-hari (Gravemeijer, 1994; Van den Heuvel-Panhuizen, 2003; Wijaya, 2012).

Pemanfaatan aplikasi seperti GeoGebra melalui perangkat *Chromebook* juga terbukti efektif dalam membantu siswa memahami materi yang lebih kompleks, seperti kubus dan balok. Penyajian konsep secara interaktif dan visual melalui teknologi ini dapat meningkatkan pemahaman siswa terhadap konsep-konsep matematika yang sulit (Badaruddin & Yani T, 2023; Fadila et al., 2025; Jelatu et al., 2018). Pendekatan RME dengan bantuan GeoGebra digunakan dalam pembelajaran ini yang mengaitkan materi dengan situasi dunia nyata dan memanfaatkan teknologi untuk meningkatkan

pemahaman siswa tentang konsep matematika (Azizah et al., 2021; Hohenwarter et al., 2011). Namun, ketika pendekatan RME menggunakan GeoGebra diterapkan, hanya sedikit siswa yang terlibat secara aktif dalam kegiatan pembelajaran. Sebagian besar siswa terlihat pasif dan cenderung menunggu instruksi guru untuk mempelajari konsep menggunakan GeoGebra.

Mengimplementasikan suatu pendekatan pembelajaran seperti RME berbantuan GeoGebra seharusnya dapat meningkatkan keterlibatan siswa di setiap aktivitas pembelajaran. Melihat kondisi tersebut, dirasa perlu untuk melakukan evaluasi pendekatan menyeluruh terhadap penerapan ini dengan membandingkan pelaksanaannya dengan standar atau kriteria penerapan pendekatan RME yang ideal. Menurut Retnawati (2014), evaluasi adalah cara untuk menilai kinerja suatu program dengan membandingkannya dengan kinerja atau tujuan yang telah ditetapkan sebelumnya. Proses evaluasi melibatkan dua aktivitas utama, yaitu pengumpulan informasi yang relevan untuk menyusun keputusan atau kebijakan, serta penerapan kriteria tertentu terhadap informasi yang tersedia untuk menentukan kebijakan yang akan diambil. Beberapa jenis model evaluasi sendiri termasuk "CIPP (Context, Input, Process, Product), Goal Oriented, Goal Free, Formatif, Sumatif, Responsive, Contentace, CSA-UCLA, dan Discrepancy" (Arikunto & Jabar, 2018). Penelitian ini akan mengevaluasi pendekatan RME dengan menggunakan model evaluasi CIPP.

Dengan empat elemen utama: konteks, input, proses, dan produk, model Stufflebeam CIPP (Context, Input, Process, and Product) dibuat untuk menilai efektivitas program secara menyeluruh. Evaluasi konteks berfokus pada pemahaman kebutuhan, masalah, dan peluang yang ada, yang menjadi dasar penentuan tujuan dan prioritas dalam menentukan relevansi suatu program. Evaluasi pada aspek input mencakup analisis terhadap sumber daya dan perencanaan yang dibutuhkan untuk menjalankan program. Sementara itu, evaluasi proses berfokus pada penilaian pelaksanaan kegiatan, guna memastikan bahwa program berjalan sesuai rencana dan mampu mencapai target yang telah ditetapkan. Terakhir, evaluasi produk digunakan untuk menilai hasil akhir dari program, apakah tujuan telah tercapai dan bagaimana efektivitasnya (Stufflebeam, 2000). Dalam penerapannya, model CIPP memberikan kerangka yang komprehensif dan mendalam untuk mengevaluasi suatu program, dengan menganggap program tersebut sebagai sebuah sistem yang terdiri dari input, proses, dan output. Evaluasi ini bertujuan untuk tidak hanya menilai, tetapi juga memberikan arahan untuk perbaikan guna meningkatkan efektivitas program. Pendekatan yang terstruktur ini memberikan peluang untuk memperoleh umpan balik yang dapat dimanfaatkan dalam upaya perbaikan berkelanjutan pada pelaksanaan program (Kamsurya, 2020).

Beberapa penelitian yang menggunakan model evaluasi CIPP, seperti yang dilakukan oleh Simangunsong dan Mustikaningsih (2022), menitikberatkan pada penerapan model ini untuk mengevaluasi pelaksanaan pembelajaran dari rumah, terutama dalam konteks kegiatan belajar mengajar. Penelitian serupa juga dilakukan oleh Damayanti et al.

(2021); dan Santuso et al. (2024) yang menggunakan model evaluasi CIPP dalam mengevaluasi pembelajaran di kelas yang hasil penelitiannya yaitu tingkat kesesuaian kegiatan pembelajaran dari 4 aspek CIPP dengan responden guru dan siswa berada pada kategori sesuai hingga sangat sesuai. Selain itu, evaluasi dengan CIPP banyak digunakan untuk mengevaluasi kurikulum juga, karena dengan menggunakan model CIPP mereka menemukan hasil yang baik untuk elemen-elemen yang dibutuhkan dalam CIPP (Al-Shanawani, 2019; Karatas & Fer, 2009; Tuna & Basdal, 2021). Berdasarkan penelitian sebelumnya yang mendukung penelitian ini, penerapan pendekatan RME dengan bantuan GeoGebra akan dievaluasi untuk menilai kemampuan pemahaman konsep matematika siswa dengan model CIPP.

2. METODE PENELITIAN

2.1. Desain Penelitian

Penelitian ini menggunakan metode deskriptif evaluatif yang bertujuan untuk menilai efektivitas penerapan RME berbantuan GeoGebra dengan membandingkan pelaksanaannya terhadap standar atau kriteria ideal. Model evaluasi CIPP diterapkan untuk menilai empat aspek utama, yaitu konteks, input, proses, dan produk. Model ini memungkinkan dilakukannya analisis menyeluruh terhadap implementasi RME berdasarkan keempat komponen tersebut.

2.2. Lokasi dan Subjek Penelitian

Penelitian ini dilaksanakan pada semester ganjil tahun ajaran 2024/2025 di salah satu sekolah menengah pertama negeri (SMPN) di Kota Yogyakarta. Sekolah ini memiliki lingkungan pembelajaran yang mendukung dengan fasilitas yang memadai serta menerapkan kurikulum yang relevan dengan pendekatan yang digunakan dalam penelitian ini. Pemilihan lokasi dilakukan secara $random\ sampling\ dengan$ pertimbangan bahwa sekolah tersebut telah menerapkan pembelajaran dengan pendekatan $Realistic\ Mathematics\ Education\ berbasis\ teknologi\ dan\ kurikulum\ merdeka. Subjek penelitian mencakup guru mata pelajaran matematika, siswa kelas VIII, serta dokumen pembelajaran seperti modul, LKPD, silabus, dan hasil tes.$

2.3. Teknik Pengumpulan Data

Pengumpulan data dilakukan melalui berbagai sumber primer dan sekunder. Sumber primer mencakup observasi langsung selama proses pembelajaran dan wawancara dengan guru maupun siswa untuk menggali informasi lebih mendalam. Adapun sumber sekunder diperoleh dari analisis dokumen, seperti silabus, modul ajar, hasil tes, serta literatur pendukung lainnya yang berkaitan dengan topik penelitian.

2.4. Teknik Analisis Data

Analisis dilakukan secara deskriptif kualitatif dan kuantitatif, dengan cara membandingkan data yang diperoleh dengan standar ideal pada masing-masing

komponen CIPP. Kriteria keberhasilan mengacu pada indikator Model CIPP, yang dibuat oleh Stufflebeam pada tahun 1968, terdiri dari empat komponen evaluasi:

a. Konteks

Menganalisis kesesuaian modul dan materi ajar RME dengan kurikulum serta kebutuhan siswa. Modul ajar yang digunakan dalam pembelajaran harus sesuai dengan konteks kehidupan nyata siswa, di mana masalah-masalah yang diberikan dapat menghubungkan konsep matematika dengan pengalaman sehari-hari mereka (BSKAP, 2022; Gravemeijer, 1994; Kemendikbud, 2007a;).

b. Input

Menilai kualifikasi guru, kesiapan siswa, ketersediaan fasilitas yang menunjang pembelajaran berbasis pendekatan RME dengan bantuan GeoGebra, Kesesuaian Materi Pembelajaran, Pelatihan dan Dukungan Guru, dan Kompetensi Teknologi Guru (Kemendikbud, 2007a; Kemendikbud, 2007b).

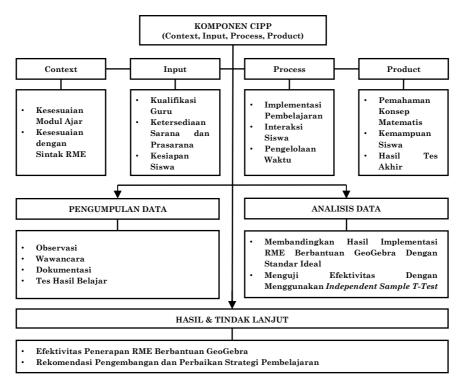
c. Proses

Mengevaluasi pelaksanaan pembelajaran, termasuk peran guru, keterlibatan siswa, keberhasilan mengikuti sintaksis pendekatan RME, Pengelolaan Waktu, dan Penggunaan Teknologi (GeoGebra) (Gravemeijer, 1994; Wijaya, 2012).

d. Produk

Mengevaluasi pengaruh penerapan RME terhadap pemahaman konsep siswa, terutama tentang materi bangun ruang sisi datar, dan kemampuan mereka untuk menyelesaikan masalah matematika yang beragam. Selain itu, tinjau hasil tes terakhir yang diberikan (Permendiknas, 2004).

Data hasil evaluasi pada tiap komponen akan diklasifikasikan berdasarkan persentase kesesuaian terhadap standar menurut Retnawati (2014) yang dapat dilihat pada Tabel 1 berikut:


	• •
Interval Skor	Kriteria
$80 \le p \le 100$	Sangat Sesuai
$60 \le p < 80$	Sesuai
$40 \le p < 60$	Cukup Sesuai

Tidak Sesuai

Tabel 1. Kriteria Hasil Evaluasi Tiap Komponen

Hasil evaluasi dapat dimanfaatkan untuk merancang strategi perbaikan dan pengembangan pendekatan RME guna meningkatkan kualitas pembelajaran matematika. Adapun bagan penelitian ini dapat dilihat pada Gambar 1 berikut.

p < 40

Gambar 1. Alur Penelitian

3. HASIL DAN PEMBAHASAN

3.1. Hasil Penelitian

Data penelitian artikel ini merupakan hasil dari pengumpulan dokumen, observasi maupun wawancara yang berkaitan dengan penerapan pendekatan RME dengan bantuan GeoGebra saat pembelajaran di salah satu kelas VIII SMPN kota Yogyakarta yang sudah dilakukan. Hasil penelitian ini dievaluasi menggunakan model CIPP yang dideskripsikan sebagai berikut.

3.1.1. Hasil Evaluasi Konteks

Tujuan dari evaluasi konteks adalah untuk mengevaluasi seberapa efektif pendekatan RME yang didukung oleh GeoGebra, khususnya pada materi bangun ruang sisi datar berupa kubus dan balok, sesuai dengan kondisi konteks pembelajaran, termasuk kurikulum, kebutuhan siswa, dan tujuan pembelajaran. Evaluasi ini berfokus pada bagaimana modul ajar dengan pendekatan RME dirancang agar relevan dengan kehidupan nyata siswa dan mendukung pemahaman konsep matematis secara kontekstual. Hasil evaluasi konteks dapat dilihat pada Tabel 2 dibawah.

Tabel 2. Hasil Evaluasi Konteks

Komponen Evaluasi Konteks	Menurut Standard	Sesuai	Tidak Sesuai
Kesesuaian Modul Ajar	Kesesuaian modul ajar yang dirancang guru dengan standar penyusunan modul ajar	$\sqrt{}$	

Komponen Evaluasi Konteks	Menurut Standard	Sesuai	Tidak Sesuai
	Modul pembelajaran dengan pendekatan RME menggunakan GeoGebra dirancang khusus untuk memenuhi pemahaman siswa terhadap konsep bangun ruang sisi datar.	V	
	Materi dalam modul berbasis masalah kontekstual yang mencerminkan situasi kehidupan nyata siswa.	$\sqrt{}$	
	Modul ajar telah mengacu pada capaian pembelajaran yang tercantum dalam kurikulum yang berlaku, seperti Kurikulum Merdeka.	$\sqrt{}$	
	Modul memuat aktivitas yang melibatkan penggunaan GeoGebra untuk membantu siswa memvisualisasikan konsep matematis, khususnya bangun ruang sisi datar.	$\sqrt{}$	
	Modul dirancang untuk mendorong partisipasi aktif siswa melalui eksplorasi masalah dan penyelesaian secara mandiri atau kelompok.	$\sqrt{}$	
Kesesuaian dengan Sintak RME	Masalah yang disajikan sesuai dengan kehidupan nyata siswa dan menjadi dasar untuk eksplorasi matematis	$\sqrt{}$	
WHE	Siswa diberi kesempatan untuk menemukan solusi awal melalui pendekatan informal yang relevan dengan pengalaman mereka.	$\sqrt{}$	
	Masalah dikaitkan dengan konsep matematis melalui aktivitas siswa untuk menjelaskan hubungan antar elemen masalah menggunakan bahasa sederhana.	$\sqrt{}$	
	Pendekatan informal siswa diarahkan menjadi solusi formal dengan melibatkan konsep matematika yang lebih mendalam menggunakan GeoGebra.	$\sqrt{}$	
	GeoGebra digunakan untuk memvisualisasikan konsep matematis, seperti bangun ruang sisi datar, guna mendukung proses pemahaman secara konkret.	$\sqrt{}$	
	Jumlah	11	0
Persentase			0%
Kategori		Sangat	Sesuai

3.1.2. Hasil Evaluasi Input

Untuk mengetahui sejauh mana sumber daya mendukung pelaksanaan pembelajaran dengan pendekatan RME berbantuan GeoGebra, evaluasi input dilakukan. Evaluasi ini difokuskan pada materi bangun ruang sisi datar dalam bentuk kubus dan balok. Penilaian meliputi aspek kualifikasi guru, kelengkapan fasilitas belajar, dan kesiapan teknologi pendukung. Analisis input ini memberikan wawasan tentang kesiapan lingkungan belajar untuk menunjang keberhasilan proses pembelajaran. Hasil evaluasi input dapat dilihat pada Tabel 3 dibawah.

Tabel 3. Hasil Evaluasi Input

Komponen Evaluasi Input	Menurut Standard	Sesuai	Tidak Sesuai
Kualifikasi	Kualifikasi akademik minimal sarjana (S1)	$\sqrt{}$	
Guru	pendidikan matematika atau bidang terkait. Latar belakang pendidikan sesuai dengan pendekatan RME, mampu merancang pembelajaran berbasis konteks nyata dan teknologi.	$\sqrt{}$	
	Guru telah memperoleh sertifikasi profesi sebagai pendidik		$\sqrt{}$
	Penguasaan teknologi GeoGebra untuk menyusun dan mengimplementasikan materi pembelajaran.	$\sqrt{}$	
	Guru telah mengikuti pelatihan atau workshop tentang pendekatan RME dan penggunaan GeoGebra.	$\sqrt{}$	
	Guru dapat merancang pembelajaran interaktif menggunakan GeoGebra, termasuk membuat simulasi visual mengenai bangun ruang sisi datar.	$\sqrt{}$	
	Guru dapat membimbing siswa untuk menggunakan GeoGebra dalam mengeksplorasi dan memahami hubungan antara elemen-elemen bangun ruang,	$\sqrt{}$	
Ketersediaan	seperti luas permukaan dan volume.		
Sarana dan Prasarana	Siswa diperbolehkan mengakses Komputer atau laptop atau Handphone untuk membuka GeoGebra dalam mendukung pembelajaran interaktif. Proyektor atau perangkat interaktif lain untuk presentasi dan visualisasi materi matematika.	√ √	
	Koneksi internet yang memadai untuk mengakses sumber daya tambahan atau pembaruan GeoGebra. Bahan ajar yang relevan, seperti Lembar Kegiatan Peserta Didik RME yang memadukan aktivitas GeoGebra dan masalah kontekstual.	\checkmark	$\sqrt{}$
	Ruang kelas yang kondusif untuk pembelajaran berbasis teknologi dan diskusi kelompok.	$\sqrt{}$	
Kesiapan Siswa	Siswa memiliki pengetahuan dasar tentang penggunaan komputer/laptop/handphone.	$\sqrt{}$,
	Siswa sudah memiliki pengetahuan awal tentang konsep dasar bangun ruang sisi datar yang akan dijadikan fokus pembelajaran. Siswa memiliki motivasi belajar yang baik untuk mengikuti pendekatan berbasis teknologi dan	$\sqrt{}$	V
	pemecahan masalah kontekstual.		
	Jumlah	12	3
Persentase Kategori			% suai

3.1.3. Hasil Evaluasi Proses

Evaluasi Proses bertujuan untuk memantau implementasi pembelajaran yang menggunakan pendekatan RME berbantuan GeoGebra khususnya pada materi bangun

ruang sisi datar bentuk kubus dan balok. Aspek yang dievaluasi mencakup kesesuaian antara perencanaan dan pelaksanaan pembelajaran dengan prinsip RME, interaksi antar siswa, pemanfaatan GeoGebra, serta pengelolaan waktu selama kegiatan pembelajaran. Evaluasi ini memberikan gambaran mengenai seberapa efektif pelaksanaan proses pembelajaran tersebut. Hasil evaluasi prosesnya dapat dilihat pada Tabel 4 dibawah.

Tabel 4. Hasil Evaluasi Proses

Komponen Evaluasi Proses	Menurut Standard	Sesuai	Tidak Sesuai
Implementasi Pembelajaran	Guru memulai pembelajaran dengan menyajikan masalah kontekstual tentang bangun ruang sisi datar.	V	
	Guru menjelaskan masalah kontekstual mengenai bangun ruang sisi datar.	$\sqrt{}$	
	Guru memberikan kesempatan kepada siswa untuk berdiskusi, baik secara kelompok maupun individu, dalam menyelesaikan masalah yang telah diberikan.	$\sqrt{}$	
	Guru meminta siswa untuk mempresentasikan hasil diskusi kelompok di depan kelas, sementara kelompok lainnya membandingkan jawaban mereka.	$\sqrt{}$	
	Guru mengarahkan siswa untuk merefleksikan hasil eksplorasi yang dilakukan menggunakan GeoGebra.	$\sqrt{}$	
	Guru menyimpulkan konsep bangun ruang sisi datar yang telah dipelajari oleh siswa.	$\sqrt{}$	
Interaksi Siswa	Siswa berpartisipasi aktif dalam diskusi kelompok untuk menyelesaikan masalah matematika berbasis konteks yang disediakan dalam lembar kegiatan peserta didik (LKPD).	$\sqrt{}$	
	Siswa dapat menggunakan GeoGebra untuk mengeksplorasi dan memvisualisasikan konsep bangun ruang, baik secara mandiri maupun dengan bimbingan dari guru.		$\sqrt{}$
	Siswa dapat mengeksplorasi pengetahuan mereka melalui masalah kontekstual yang berkaitan dengan bangun ruang sisi datar.	$\sqrt{}$	
	Interaksi antara siswa mencerminkan kolaborasi yang baik, seperti saling berbagi ide dan membantu dalam memahami konsep.	$\sqrt{}$	
	Siswa bertanya kepada guru tentang hal-hal yang masih belum mereka mengerti.	$\sqrt{}$	
Pengelolaan Waktu	Alokasi waktu yang direncanakan cukup untuk setiap tahap pembelajaran berbasis RME, termasuk eksplorasi, diskusi, dan refleksi.		$\sqrt{}$
	Guru mengelola waktu dengan efektif, sehingga setiap siswa mendapatkan kesempatan untuk menggunakan GeoGebra selama pembelajaran.	$\sqrt{}$	
	Jumlah	11	2
Persentase		85	5%
	Kategori	Sangat	Sesuai

3.1.4. Hasil Evaluasi Produk

Tujuan evaluasi produk adalah untuk mengevaluasi hasil akhir siswa setelah mengikuti pembelajaran dengan pendekatan RME berbantuan GeoGebra, terutama dengan materi bangun ruang sisi datar seperti kubus dan balok. Fokus evaluasi ini adalah untuk mengetahui bagaimana siswa memahami konsep matematika, kemampuan mereka dalam menyelesaikan masalah berbasis konteks, karya yang dihasilkan menggunakan GeoGebra, serta peningkatan pencapaian belajar secara keseluruhan. Hasil dari evaluasi produk ini memberikan gambaran mengenai sejauh mana tujuan pembelajaran telah tercapai. Hasil evaluasi produk dapat dilihat pada Tabel 5 dibawah.

Tabel 5. Hasil Evaluasi Produk

Komponen Evaluasi Produk	Menurut Standard	Sesuai	Tidak Sesuai
Pemahaman Konsep Matematis	Siswa mampu menjelaskan konsep dasar bangun ruang sisi datar, khususnya kubus dan balok, dengan tepat serta menggunakan istilah matematika yang sesuai.	$\sqrt{}$	
	Siswa dapat mengklasifikasikan berbagai objek berdasarkan karakteristik yang relevan dengan konsep bangun ruang sisi datar, khususnya pada bentuk kubus dan balok.	$\sqrt{}$	
	Siswa dapat memberikan contoh dan bukan contoh dari konsep bangun ruang sisi datar, khususnya kubus dan balok.	$\sqrt{}$	
	Siswa dapat mengubah suatu konsep menjadi bentuk matematisnya.	$\sqrt{}$	
	Siswa dapat menghitung luas permukaan dan volume bangun ruang sisi datar dengan mengikuti langkah- langkah yang sistematis dan logis.	$\sqrt{}$	
Kemampuan Siswa	Siswa mampu memecahkan masalah kontekstual yang disajikan dalam LKPD pembelajaran berbasis pendekatan RME.	V	
	Siswa dapat menggunakan GeoGebra untuk menyelesaikan masalah geometris, seperti menggambarkan bangun ruang atau menghitung parameter tertentu.	$\sqrt{}$	
	Siswa mampu menghasilkan model bangun ruang menggunakan GeoGebra, seperti menggambar kubus dan balok secara akurat.	$\sqrt{}$	
Hasil Tes Akhir	Siswa mencapai nilai yang memenuhi Kriteria Ketuntasan Minimal (KKM) dalam tes yang dirancang untuk mengukur pemahaman konsep bangun ruang sisi datar.	V	
	Siswa menunjukkan peningkatan hasil belajar sebelum dan sesudah penerapan pendekatan RME berbantuan GeoGebra	$\sqrt{}$	
	Jumlah	10	0
Persentase			0%
<u>Kategori</u>		Sangat	Sesuai

3.2. Pembahasan

3.2.1 Evaluasi Konteks

Berdasarkan Tabel 2 diatas, hasil perbandingan antara komponen modul ajar yang dibuat guru dengan standar penyusunan komponen yang harus ada pada modul ajar telah sangat sesuai. Menurut Salsabila et al. (2023), sebelum menyusun modul ajar dalam kurikulum merdeka, guru harus mempertimbangkan beberapa kriteria, seperti esensialitas, daya tarik, makna, tantangan, relevansi, kontekstualitas, dan kesinambungan, yang disesuaikan dengan tahap pembelajaran siswa. Setelah kriteria ini ditentukan, modul ajar dapat dirancang berdasarkan komponen yang telah ditetapkan, dengan tetap menyesuaikan kebutuhan siswa, guru, dan sekolah. Modul ajar juga diharapkan sudah sangat rinci, spesifik, dan lengkap (Mustadi et a., 2024).

BSKAP (2022) mengungkapkan bahwa dalam penyusunan modul pembelajaran, ada beberapa komponen penting yang perlu dimasukkan, antara lain identitas modul, kompetensi awal siswa, dan tujuan pembelajaran yang jelas. Selain itu, model pembelajaran yang digunakan, sarana dan prasarana yang tersedia, serta asesmen yang mendukung pemahaman siswa juga sangat penting. Kegiatan pembelajaran yang bermakna, refleksi untuk siswa dan guru, serta lembar kerja siswa turut memperkaya proses belajar. Di samping itu, elemen remedial dan pengayaan, bahan bacaan, daftar pustaka, dan glosarium juga perlu disertakan agar pembelajaran lebih komprehensif dan menyeluruh. Untuk menghasilkan pengalaman belajar yang efektif dan menyeluruh, bagian-bagian ini saling berhubungan (Kemendikbud, 2007a).

Menurut Gravemeijer (1994), dalam pendekatan RME, terdapat tiga prinsip utama yang harus diterapkan dalam merancang pembelajaran, yaitu "Reinvention and Progressive Mathematization, Didactical Phenomenology, and Self-developed Models". Sementara itu, sintaks RME menurut Widyastuti & Pujiastuti (2014) meliputi: a) Memberikan masalah yang realistis, b) Memahami masalah realistis, c) Menjelaskan masalah nyata, d) Menyelesaikan masalah nyata, e) Membandingkan dan mendiskusikan solusi, serta f) Menyimpulkan hasil diskusi. Berdasarkan kriteria tersebut hasil konteks yang didapatkan yaitu sudah sesuai dengan sintak dari pendekatan RME yang tertera pada modul ajar.

3.2.2. Evaluasi Input

Berdasarkan Tabel 3, persyaratan menjadi guru di SMP/MTs mencakup kepemilikan gelar sarjana (S1) atau diploma empat (D-IV) yang sesuai dengan mata pelajaran atau bidang keahlian yang diajarkan. Pendidikan tinggi yang ditempuh juga harus relevan dengan bidang tersebut. Selain itu, guru diwajibkan memiliki sertifikat pendidik sebagai bukti pengakuan terhadap kompetensi profesional dalam mengajar di jenjang SMP atau sederajat. Guru juga perlu memenuhi berbagai kompetensi pendidikan, meliputi:

kompetensi pedagogik yang mencakup kemampuan merancang dan mengelola pembelajaran; kompetensi kepribadian sebagai teladan moral; kompetensi profesional yang menuntut penguasaan materi pelajaran; serta kompetensi sosial yang mencakup keterampilan berkomunikasi dan berinteraksi secara efektif dengan siswa, rekan sejawat, orang tua, maupun masyarakat luas (Kemendikbud, 2007a).

Berdasarkan hasil observasi, guru masih belum memiliki sertifikat profesional sebagai pendidik. Selain itu, prasarana dari sekolah tersebut masih ada yang kurang yaitu koneksi internet untuk membuka GeoGebra untuk memvisualisasikan materi bangun ruang sisi datar sehingga siswa kesulitan dalam mengaksesnya. Sarana dan prasarana dari SMPN 12 Yogyakarta yang lainnya sudah memenuhi seperti tersedianya proyektor disetiap kelas untuk memvisualisasi pembelajaran. Selain itu, siswa disekolah tersebut sudah diperbolehkan untuk membawa *handphone* untuk menunjang pembelajaran berbasis teknologi sehingga memudahkan siswa dalam mengikuti pembelajaran dengan pendekatan RME berbantuan GeoGebra.

Menurut Subadre et al. (2023), ketersediaan sarana dan prasarana yang memadai diharapkan dapat meningkatkan kualitas pendidikan. Mereka menyatakan bahwa sarana dan prasarana mencakup alat dan perlengkapan yang mendukung pendidikan, baik secara langsung maupun tidak langsung, terutama dalam pembelajaran di sekolah. Setiap institusi pendidikan bertanggung jawab untuk menyediakan fasilitas dan perlengkapan yang diperlukan, mengingat peran pentingnya, baik secara langsung maupun tidak langsung, dalam memastikan bahwa proses pembelajaran berlangsung dengan baik (Kemendikbud, 2007b). Berdasarkan evaluasi input, tingkat kesesuaian evaluasi input mencapai 80% sesuai dengan kriteria yang ditetapkan

3.2.3. Evaluasi Proses

Berdasarkan Tabel 4, pelaksanaan pembelajaran dengan pendekatan RME berbantuan GeoGebra telah berjalan sesuai kriteria langkah-langkah pembelajaran RME. Mengacu pada Widyastuti & Pujiastuti (2014); dan Wijaya (2012), proses pembelajaran RME diawali dengan pemberian masalah realistis kepada siswa. Selanjutnya, siswa diarahkan untuk memahami permasalahan tersebut, kemudian guru memaparkan masalah realistic agar lebih mudah dipahami. Setelah itu, siswa menyelesaikan masalah realistic yang telah diberikan dan mempresentasikan hasilnya di depan kelas. Sementara itu, siswa lain membandingkan serta mendiskusikan jawaban, dan pada tahap akhir guru menyimpulkan hasil diskusi dengan bantuan GeoGebra. Menurut Arsaythamby & Zubainur (2014); Hakim et al. (2024) peran siswa dalam pembelajaran dengan pendekatan RME yaitu siswa dapat terlibat aktif dalam kegiatan belajar dan membuat pelajaran Matematika lebih bermakna. Siswa mampu mengeksplore pengetahuan tentang materi pembelajaran dari masalah dalam kehidupan sehari-hari. Siswa melakukan diskusi bersama teman sejawat terkait masalah realistik yang diberikan.

Selain kesesuaian dalam pelaksanaan pembelajaran guru juga harus bisa mengelola waktu dalam melakukan pembelajaran. Dalam pembelajaran dengan pendekatan Realistic Mathematics Education (RME), pengelolaan waktu pembelajaran guru sangat penting untuk mendukung perkembangan kemampuan siswa. Menurut Muah (2022), guru bertanggung jawab untuk memberi siswa waktu yang cukup untuk aktif terlibat dalam meneliti masalah kontekstual yang relevan dengan kehidupan mereka. Dalam RME, siswa diberi kesempatan untuk membangun pengetahuan mereka melalui pengalaman nyata. Berdasarkan observasi yang dilakukan Hasilnya menunjukkan bahwa guru masih gagal mengelola waktu dengan baik, sehingga banyak kegiatan dilakukan di pertemuan selanjutnya untuk menutupi aktivitas yang tidak berlangsung. Oleh karena itu, pada evaluasi proses, mencapai persentase 85%, yang sangat sesuai dengan standar.

3.2.4. Evaluasi Produk

Berdasarkan data pada Tabel 5, penerapan pendekatan RME berbantuan GeoGebra pada materi bangun ruang sisi datar memberikan peningkatan signifikan dibandingkan kondisi sebelumnya, khususnya pada submateri kubus dan balok. Data menunjukkan bahwa 19 dari 26 siswa memperoleh nilai di atas Kriteria Ketuntasan Minimum (KKM) sekolah. Nilai rata-rata pretest siswa sebesar 47,76% meningkat menjadi 80,29% pada posttest. Nilai p-value yang diperoleh, yaitu < 0,001 (< 0,05), mengindikasikan penolakan H₀. Dengan demikian, pembelajaran matematika menggunakan pendekatan RME berbantuan GeoGebra berpengaruh secara signifikan terhadap pemahaman konsep matematis siswa. Seluruh indikator pemahaman konsep matematis mengalami peningkatan, mencakup kemampuan menyatakan ulang konsep, mengklasifikasikan objek berdasarkan sifat tertentu sesuai konsep, memahami konsep secara tepat, serta menerapkan algoritma dalam pemecahan masalah (Permendiknas, 2004). Melalui pembelajaran ini, siswa dapat memanfaatkan GeoGebra untuk mengeksplorasi dan memvisualisasikan bentuk kubus maupun balok dalam rangka memperdalam pemahaman konsep. Oleh karena itu, dapat disimpulkan bahwa produk akhir dari penerapan pendekatan RME berbantuan GeoGebra sesuai dengan kriteria yang ditetapkan, dengan tingkat kesesuaian mencapai 100%.

Hasil penelitian ini mengungkapkan bahwa penerapan pendekatan RME berbantuan GeoGebra efektif dan layak digunakan untuk meningkatkan pemahaman konsep matematis siswa, terutama pada topik bangun ruang sisi datar. Penggabungan pembelajaran kontekstual dengan teknologi visual interaktif mampu menciptakan proses belajar yang lebih menarik serta bermakna. Penggunaan model evaluasi CIPP memberikan kerangka penilaian yang menyeluruh dan dapat diadaptasi pada konteks pendidikan lainnya. Komponen konteks dan produk menunjukkan capaian yang memuaskan, sementara hambatan seperti keterbatasan akses internet dan belum terpenuhinya sertifikasi pendidik bagi guru tidak menjadi penghalang signifikan dalam mencapai tujuan pembelajaran. Temuan ini konsisten dengan hasil penelitian

sebelumnya yang menunjukkan bahwa RME mampu meningkatkan pemahaman konsep serta keterlibatan aktif siswa (Badaruddin & Yani, 2023; Mulyawati & Umam, 2019).

4. SIMPULAN

Hasil evaluasi menunjukkan bahwa pendekatan Realistic Mathematics Education dengan bantuan GeoGebra dengan model CIPP telah memenuhi standar kriteria yang diinginkan. Namun terdapat juga beberapa komponen yang belum sesuai seperti guru yang belum mendapatkan sertifikasi pendidik, fasilitas internet yang kurang memadai dalam mengoprasikan GeoGebra, alokasi pembelajaran yang masih belum optimal diterapkan oleh guru. Namun, telah terbukti bahwa menggunakan metode RME berbantuan GeoGebra dapat meningkatkan pemahaman siswa tentang konsep matematika, terutama dengan materi bangun ruang sisi datar seperti balok dan kubus. Siswa dapat memperoleh pemahaman yang lebih baik tentang konsep bangun ruang melalui modul ajar yang dirancang dengan konteks nyata dan menggunakan GeoGebra sebagai alat bantu visual. Meskipun demikian, perlu perhatian ekstra pada tahap awal pembelajaran untuk memastikan bahwa semua siswa dapat terbiasa dengan penggunaan GeoGebra dan mengoptimalkan pemanfaatannya.

5. UCAPAN TERIMA KASIH

Penulis menyampaikan penghargaan kepada Kepala SMP Negeri di kota Yogyakarta, para pendidik, serta siswa kelas VIII atas izin, dukungan, dan partisipasi selama pelaksanaan penelitian. Ucapan terima kasih juga ditujukan kepada dosen pembimbing serta rekan-rekan sejawat yang telah memberikan saran dan masukan berharga dalam penyusunan artikel ini. Diharapkan hasil tulisan ini dapat memberikan kontribusi positif bagi pengembangan pembelajaran matematika melalui pendekatan *Realistic Mathematics Education* (RME).

6. REKOMENDASI

Berdasarkan temuan penelitian, penerapan pendekatan *Realistic Mathematics Education* (RME) berbantuan GeoGebra menunjukkan kategori sangat sesuai pada komponen konteks dan produk, serta sesuai pada komponen input, dengan proses pembelajaran yang tergolong sangat sesuai. Oleh karena itu, penelitian selanjutnya disarankan mengembangkan model pembelajaran dengan memperkuat aspek input, terutama peningkatan kompetensi pendidik, serta mengoptimalkan manajemen waktu pada tahap proses. Selain itu, penelitian mendatang dianjurkan menggunakan desain kuasi-eksperimen dengan kelompok kontrol untuk menguji lebih lanjut pengaruh RME berbantuan GeoGebra terhadap pemahaman konsep matematis pada berbagai topik dan jenjang pendidikan.

7. REFERENSI

Al-Shanawani, H. M. (2019). Evaluation of self-learning curriculum for kindergarten using Stufflebeam's CIPP model. SAGE Open, 9(1), 215824401882238. https://doi.org/10.1177/2158244018822380

- Arikunto, S., & Jabar, C. S. A. (2018). Evaluasi program pendidikan: Pedoman teoretis praktis bagi mahasiswa dan praktisi pendidikan. PT Bumi Aksara.
- Arsaythamby, V., & Zubainur, C. M. (2014). How a realistic mathematics educational approach affect students' activities in primary schools? *Procedia Social and Behavioral Sciences*, 159, 309–313. https://doi.org/10.1016/j.sbspro.2014.12.378
- Azizah, A. N., Kusmayadi, T. A., & Fitriana, L. (2021). The effectiveness of software GeoGebra to improve visual representation ability. Journal of Physics: Conference Series, 1808(1), 012059. https://doi.org/10.1088/1742-6596/1808/1/012059
- Badan Standar Kurikulum Asesmen Pembelajaran. (2022). Panduan pembelajaran dan asesmen pendidikan anak usia dini, pendidikan dasar, dan menengah. Kemendikbud Ristek.
- Badaruddin, & Yani, T. A. (2023). Analisis penggunaan GeoGebra berbantuan Chromebook untuk memudahkan siswa memahami konsep matematika materi bangun ruang sisi datar kelas VIII. *Jurnal Alwatzikhoebillah*, 9(2), 351–361. https://doi.org/10.37567/alwatzikhoebillah.v9i2.1722
- Damayanti, E., Ibrahim, E. E., & Ismail, M. I. (2021). Evaluation of online learning programs at universities using the CIPP model. *Jurnal Educative: Journal of Educational Studies*, 6(1), 95–110. https://doi.org/10.30983/educative.v6i1.4678
- Fadila, K. A., Amrullah, Primajati, G., & Hikmah, N. (2025). Pengembangan media interaktif pada materi geometri dengan website berbasis *Geogebra* siswa kelas IX di SMPN 9 Mataram. *Mandalika Mathematics and Education Journal*, 7(2), 639-649. https://doi.org/10.29303/jm.v7i2.9231
- Gravemeijer, K. (1994). Developing realistic mathematics education. CD Press.
- Haigh, J. (2019). Mathematics in everyday life (2nd ed.). Cham, Switzerland: Springer.
- Hakim, N., Apriyanto, Mardiati, & Sitepu, E. (2024). Implementation of the realistic mathematics education (RME) approach in geometry learning in secondary schools. *Aksioma: Jurnal Matematika*, 1(3), 17–30. https://doi.org/10.62872/y2rh7g04
- Hohenwarter, M., Hohenwarter, J., Kreis, Y., & Lavicza, Z. (2011, July). Teaching and learning calculus with free dynamic mathematics software GeoGebra. Paper presented at the 11th International Congress on Mathematical Education (ICME-11), Monterrey, Nuevo León, Mexico.
- Jelatu, S., Sariyasa, & Ardana, I. M. (2018). Effect of GeoGebra-aided REACT strategy on understanding of geometry concepts. *International Journal of Instruction*, 11(4), 325–336. https://doi.org/10.12973/iji.2018.11421a
- Kamsurya, R. (2020). Learning evaluation of mathematics during the pandemic period COVID-19 in Jakarta. *International Journal of Pedagogical Development and Lifelong Learning*, 1(2), 1–5. https://doi.org/10.30935/ijpdll/8439
- Karataş, H., & Fer, S. (2009). Evaluation of English curriculum at Yıldız Technical University using CIPP model. *Egitim ve Bilim*, 34(153), 47–60.
- Kementerian Pendidikan Nasional Republik Indonesia. (2007a). Peraturan Menteri Pendidikan Nasional Nomor 24 Tahun 2007 tentang standar sarana dan prasarana untuk SD/MI, SMP/MTs, dan SMA/MA. Kementerian Pendidikan Nasional.
- Kementerian Pendidikan Nasional Republik Indonesia. (2007b). Peraturan Menteri Pendidikan Nasional No. 16 Tahun 2007 tentang standar kualifikasi akademik dan kompetensi guru. Kementerian Pendidikan Nasional.
- Kairuddin, Samosir, M. I., Sitorus, G. E., Sihotang, H. M. W., & Tanjung, J. Y. (2024). Penerapan media pembelajaran menggunakan papan peluang, dadu, dan multimedia pembelajaran

- interaktif dengan pendekatan RME di SMA Swasta PAB 8 Saentis Percut. *Mandalika Mathematics and Education Journal*, 6(2), 585-594. https://doi.org/10.29303/jm.v6i2.7821
- Muah, T. (2022). Penerapan pendekatan pembelajaran realistic mathematics education (RME) untuk meningkatkan hasil belajar matematika materi segiempat. *Paedagogia: Jurnal Penelitian Pendidikan*, 25(2), 132–146. https://doi.org/10.20961/paedagogia.v25i2.64545
- Muliyardi. (2002). Strategi pembelajaran matematika. FMIPA UNP.
- Mulyawati, K. I., & Umam, K. (2019). Conceptual understanding and mathematical representation analysis of realistic mathematics education based on personality types. *Al-Jabar: Jurnal Pendidikan Matematika*, 10(2), 201–210. https://doi.org/10.24042/ajpm.v10i2.4605
- Mustadi, A., Wibowo, S. E., Zubaidah, E., Supartinah, Sugiarsih, S., & Sayekti, O. M. (2024). Needs analysis of project-based teaching module development in the independent curriculum. *Jurnal Prima Edukasia*, 12(1), 52–60. https://doi.org/10.21831/jpe.v12i1.66933
- National Council of Teachers of Mathematics (NCTM). (2000). Principles and standards for school mathematics. Reston: National Council of Teachers of Mathematics. https://www.nctm.org/PtA/
- Peraturan Direktorat Jenderal Pendidikan Dasar dan Menengah, Departemen Pendidikan Nasional Republik Indonesia. (2004). Peraturan Dirjen Dikdasmen No. 506/C/PP/2004 tentang indikator pemahaman konsep matematis siswa. Departemen Pendidikan Nasional.
- Retnawati, H., & Mulyatiningsih, E. (2014). Evaluasi program pendidikan. Universitas Terbuka.
- Salsabilla, I. I., Jannah, E., & Juanda. (2023). Analisis modul ajar berbasis kurikulum merdeka. Jurnal Literasi dan Pembelajaran Indonesia, 3(1), 33–41.
- Simangunsong, J., & Mustikaningsih, H. (2022). An evaluation of the implementation of study-from-home policy in senior high school during COVID-19 pandemic. *REID (Research and Evaluation in Education)*, 8(1), 67–77. https://doi.org/10.21831/reid.v8i1.36734
- Stufflebeam, D. L. (2000). The CIPP model for evaluation. In D. L. Stufflebeam, G. F. Madaus, & T. Kellaghan (Eds.), *Evaluation models: Viewpoints on educational and human service evaluation* (2nd ed., pp. 279–317). Kluwer Academic.
- Subadre, W., Jufri, A. W., & Karta, I. W. (2023). Pengaruh sarana prasarana dan pemanfaatan teknologi informasi dalam pembelajaran terhadap mutu pendidikan di sekolah menengah pertama negeri Kabupaten Lombok Utara tahun 2022. *JPAP (Jurnal Praktisi Administrasi Pendidikan)*, 7(1), 1–9. https://doi.org/10.29303/jpap.v7i1.504
- Sutherland, R. (2007). Teaching for learning mathematics. Maidenhead: Open University Press.
- Tuna, H., & Başdal, M. (2021). Curriculum evaluation of tourism undergraduate programs in Turkey: A CIPP model-based framework. *Journal of Hospitality, Leisure, Sport & Tourism Education*, 29, 100324. https://doi.org/10.1016/j.jhlste.2021.100324
- Van den Heuvel-Panhuizen, M. (2003). The didactical use of models in realistic mathematics education: An example from a longitudinal trajectory on percentage. *Educational Studies in Mathematics*, 54(1), 9–35. https://doi.org/10.1023/B:EDUC.0000005212.03219.dc
- Widyastuti, N. S., & Pujiastuti, P. (2014). Pengaruh pendidikan matematika realistik Indonesia (PMRI) terhadap pemahaman konsep dan berpikir logis siswa. *Jurnal Prima Edukasia*, 2(2), 183. https://doi.org/10.21831/jpe.v2/2.2718
- Wijaya, A. (2012). Pendidikan matematika realistik: Suatu alternatif pendekatan pembelajaran matematika. Graha Ilmu.