Halophilic Bacteria as Promising Biocatalyst Producers: A Review on Enzyme Production
Authors
Diah Miftahul Aini , Solina BalqisDOI:
10.29303/jbt.v25i2.9125Published:
2025-05-31Issue:
Vol. 25 No. 2 (2025): April-JuniKeywords:
Extremophile, enzyme, halophilic bacteria, high salinity.Articles
Downloads
How to Cite
Downloads
Metrics
Abstract
Halophilic bacteria, a group of extremophiles adapted to high-salinity environments, have emerged as valuable sources of relevant biocatalysts. This review aims to compile and analyse current knowledge on the enzymatic potential of halophilic bacteria. Using a systematic literature review as its primary methodology to collect, examine, and integrate academic findings on halophilic bacteria as promising sources of biocatalysts. This review highlights that halophilic bacteria possess remarkable physiological and biochemical adaptations that enable them to survive osmotic stress, with recent advances in genetic engineering and synthetic biology enhancing their enzyme production and functional efficiency. These findings underscore their potential as robust and efficient biocatalysts for sustainable industrial applications. In conclusion, halophilic bacteria represent valuable resources for biotechnology, particularly in extreme conditions where conventional enzymes fail. Future research should focus on in-depth genomic and proteomic analyses, metabolic engineering for optimized enzyme yields, industrial-scale feasibility studies, environmental impact assessments, and cross-disciplinary collaborations to fully harness their capabilities in real-world applications.
References
Agrawal, S., Chavan, P., & Dufossé, L. (2024). Hidden Treasure: Halophilic Fungi as a Repository of Bioactive Lead Compounds. Journal of Fungi, 10(4), 290. https://doi.org/10.3390/jof10040290
Ajeje, S. B., Hu, Y., Song, G., Peter, S. B., Afful, R. G., Sun, F., Asadollahi, M. A., Amiri, H., Abdulkhani, A., & Sun, H. (2021). Thermostable Cellulases / Xylanases From Thermophilic and Hyperthermophilic Microorganisms: Current Perspective. Frontiers in Bioengineering and Biotechnology, 9. https://doi.org/10.3389/fbioe.2021.794304
Albayati, S. H., Masomian, M., Ishak, S. N. H., Mohamad Ali, M. S. bin, Thean, A. L., Mohd Shariff, F. binti, Muhd Noor, N. D. binti, & Raja Abd Rahman, R. N. Z. (2020). Main Structural Targets for Engineering Lipase Substrate Specificity. Catalysts, 10(7), 747. https://doi.org/10.3390/catal10070747
Amoozegar, M. A., Safarpour, A., Noghabi, K. A., Bakhtiary, T., & Ventosa, A. (2019). Halophiles and Their Vast Potential in Biofuel Production. Frontiers in Microbiology, 10. https://doi.org/10.3389/fmicb.2019.01895
Bilstein, A., Heinrich, A., Rybachuk, A., & Mösges, R. (2021). Ectoine in the Treatment of Irritations and Inflammations of the Eye Surface. BioMed Research International, 2021(1). https://doi.org/10.1155/2021/8885032
Bremer, E., & Krämer, R. (2019). Responses of Microorganisms to Osmotic Stress. Annual Review of Microbiology, 73(1), 313–334. https://doi.org/10.1146/annurev-micro-020518-115504
Corral, P., Amoozegar, M. A., & Ventosa, A. (2019). Halophiles and Their Biomolecules: Recent Advances and Future Applications in Biomedicine. Marine Drugs, 18(1), 33. https://doi.org/10.3390/md18010033
Cunha, J. T., Soares, P. O., Baptista, S. L., Costa, C. E., & Domingues, L. (2020). Engineered Saccharomyces cerevisiae for lignocellulosic valorization: a review and perspectives on bioethanol production. Bioengineered, 11(1), 883–903. https://doi.org/10.1080/21655979.2020.1801178
Elyasi Far, B., Ahmadi, Y., Yari Khosroshahi, A., & Dilmaghani, A. (2020). Microbial Alpha-Amylase Production: Progress, Challenges and Perspectives. Advanced Pharmaceutical Bulletin, 10(3), 350–358. https://doi.org/10.34172/apb.2020.043
Espina, G., Atalah, J., & Blamey, J. M. (2021). Extremophilic Oxidoreductases for the Industry: Five Successful Examples With Promising Projections. Frontiers in Bioengineering and Biotechnology, 9. https://doi.org/10.3389/fbioe.2021.710035
Fatma, Z., Schultz, J. C., & Zhao, H. (2020). Recent advances in domesticating non‐model microorganisms. Biotechnology Progress, 36(5). https://doi.org/10.1002/btpr.3008
Gaffney, E. M., Simoska, O., & Minteer, S. D. (2021). The Use of Electroactive Halophilic Bacteria for Improvements and Advancements in Environmental High Saline Biosensing. Biosensors, 11(2), 48. https://doi.org/10.3390/bios11020048
Hermann, L., Mais, C.-N., Czech, L., Smits, S. H. J., Bange, G., & Bremer, E. (2020). The ups and downs of ectoine: structural enzymology of a major microbial stress protectant and versatile nutrient. Biological Chemistry, 401(12), 1443–1468. https://doi.org/10.1515/hsz-2020-0223
Ilić, N., Milić, M., Beluhan, S., & Dimitrijević-Branković, S. (2023). Cellulases: From Lignocellulosic Biomass to Improved Production. Energies, 16(8), 3598. https://doi.org/10.3390/en16083598
Jin, M., Gai, Y., Guo, X., Hou, Y., & Zeng, R. (2019). Properties and Applications of Extremozymes from Deep-Sea Extremophilic Microorganisms: A Mini Review. Marine Drugs, 17(12), 656. https://doi.org/10.3390/md17120656
Kamali, S., & Singh, A. (2023). Genomic and Transcriptomic Approaches to Developing Abiotic Stress-Resilient Crops. Agronomy, 13(12), 2903. https://doi.org/10.3390/agronomy13122903
Kasirajan, L., & Maupin‐Furlow, J. A. (2021). Halophilic archaea and their potential to generate renewable fuels and chemicals. Biotechnology and Bioengineering, 118(3), 1066–1090. https://doi.org/10.1002/bit.27639
Kohli, I., Joshi, N. C., Mohapatra, S., & Varma, A. (2020). Extremophile – An Adaptive Strategy for Extreme Conditions and Applications. Current Genomics, 21(2), 96–110. https://doi.org/10.2174/1389202921666200401105908
Kuznetsova, A. A., & Kuznetsov, N. A. (2023). Direct Enzyme Engineering of B Family DNA Polymerases for Biotechnological Approaches. Bioengineering, 10(10), 1150. https://doi.org/10.3390/bioengineering10101150
Lach, J., Jęcz, P., Strapagiel, D., Matera-Witkiewicz, A., & Stączek, P. (2021). The Methods of Digging for “Gold” within the Salt: Characterization of Halophilic Prokaryotes and Identification of Their Valuable Biological Products Using Sequencing and Genome Mining Tools. Genes, 12(11), 1756. https://doi.org/10.3390/genes12111756
Liu, Z. L., & Dien, B. S. (2022). Cellulosic Ethanol Production Using a Dual Functional Novel Yeast. International Journal of Microbiology, 2022, 1–12. https://doi.org/10.1155/2022/7853935
Martínez-Espinosa, R. M. (2020). Microorganisms and Their Metabolic Capabilities in the Context of the Biogeochemical Nitrogen Cycle at Extreme Environments. International Journal of Molecular Sciences, 21(12), 4228. https://doi.org/10.3390/ijms21124228
Matarredona, L., Camacho, M., Zafrilla, B., Bonete, M.-J., & Esclapez, J. (2020). The Role of Stress Proteins in Haloarchaea and Their Adaptive Response to Environmental Shifts. Biomolecules, 10(10), 1390. https://doi.org/10.3390/biom10101390
Mohanta, S., Bahuguna, M., Baley, J. D., Sharma, S., & Sharma, V. (2023). Extremophilic Cellulases: A Comprehensive Review. Journal of Tropical Biodiversity and Biotechnology, 8(3), 74986. https://doi.org/10.22146/jtbb.74986
Moopantakath, J., Imchen, M., Anju, V. T., Busi, S., Dyavaiah, M., Martínez-Espinosa, R. M., & Kumavath, R. (2023). Bioactive molecules from haloarchaea: Scope and prospects for industrial and therapeutic applications. Frontiers in Microbiology, 14. https://doi.org/10.3389/fmicb.2023.1113540
Ng, H. S., Wan, P.-K., Kondo, A., Chang, J.-S., & Lan, J. C.-W. (2023). Production and Recovery of Ectoine: A Review of Current State and Future Prospects. Processes, 11(2), 339. https://doi.org/10.3390/pr11020339
Pérez-Rivero, C., & López-Gómez, J. P. (2023). Unlocking the Potential of Fermentation in Cosmetics: A Review. Fermentation, 9(5), 463. https://doi.org/10.3390/fermentation9050463
Rahman, Md. M., Mostofa, M. G., Keya, S. S., Siddiqui, Md. N., Ansary, Md. M. U., Das, A. K., Rahman, Md. A., & Tran, L. S.-P. (2021). Adaptive Mechanisms of Halophytes and Their Potential in Improving Salinity Tolerance in Plants. International Journal of Molecular Sciences, 22(19), 10733. https://doi.org/10.3390/ijms221910733
Ramasamy, K. P., & Mahawar, L. (2023). Coping with salt stress-interaction of halotolerant bacteria in crop plants: A mini review. Frontiers in Microbiology, 14. https://doi.org/10.3389/fmicb.2023.1077561
Reetz, M. (2022). Making Enzymes Suitable for Organic Chemistry by Rational Protein Design. ChemBioChem, 23(14). https://doi.org/10.1002/cbic.202200049
Santhaseelan, H., Dinakaran, V. T., Dahms, H.-U., Ahamed, J. M., Murugaiah, S. G., Krishnan, M., Hwang, J.-S., & Rathinam, A. J. (2022). Recent Antimicrobial Responses of Halophilic Microbes in Clinical Pathogens. Microorganisms, 10(2), 417. https://doi.org/10.3390/microorganisms10020417
Sayed, A. M., Hassan, M. H. A., Alhadrami, H. A., Hassan, H. M., Goodfellow, M., & Rateb, M. E. (2020). Extreme environments: microbiology leading to specialized metabolites. Journal of Applied Microbiology, 128(3), 630–657. https://doi.org/10.1111/jam.14386
Sysoev, M., Grötzinger, S. W., Renn, D., Eppinger, J., Rueping, M., & Karan, R. (2021). Bioprospecting of Novel Extremozymes From Prokaryotes—The Advent of Culture-Independent Methods. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.630013
Torres, M., Dessaux, Y., & Llamas, I. (2019). Saline Environments as a Source of Potential Quorum Sensing Disruptors to Control Bacterial Infections: A Review. Marine Drugs, 17(3), 191. https://doi.org/10.3390/md17030191
Uritskiy, G., & DiRuggiero, J. (2019). Applying Genome-Resolved Metagenomics to Deconvolute the Halophilic Microbiome. Genes, 10(3), 220. https://doi.org/10.3390/genes10030220
Varrella, S., Tangherlini, M., & Corinaldesi, C. (2020). Deep Hypersaline Anoxic Basins as Untapped Reservoir of Polyextremophilic Prokaryotes of Biotechnological Interest. Marine Drugs, 18(2), 91. https://doi.org/10.3390/md18020091
Verma, D. (2021). Extremophilic Prokaryotic Endoxylanases: Diversity, Applicability, and Molecular Insights. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.728475
Williams, H. N., & Chen, H. (2020). Environmental Regulation of the Distribution and Ecology of Bdellovibrio and Like Organisms. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.545070
Wu, J.-H., McGenity, T. J., Rettberg, P., Simões, M. F., Li, W.-J., & Antunes, A. (2022). The archaeal class Halobacteria and astrobiology: Knowledge gaps and research opportunities. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.1023625
Yasukawa, K., Yanagihara, I., & Fujiwara, S. (2020). Alteration of enzymes and their application to nucleic acid amplification (Review). International Journal of Molecular Medicine. https://doi.org/10.3892/ijmm.2020.4726
Yin, W., Wang, Y., Liu, L., & He, J. (2019). Biofilms: The Microbial “Protective Clothing” in Extreme Environments. International Journal of Molecular Sciences, 20(14), 3423. https://doi.org/10.3390/ijms20143423
Zeidler, S., & Müller, V. (2019). Coping with low water activities and osmotic stress in Acinetobacter baumannii : significance, current status and perspectives. Environmental Microbiology, 21(7), 2212–2230. https://doi.org/10.1111/1462-2920.14565
Zhang, S., Guo, F., Yan, W., Dai, Z., Dong, W., Zhou, J., Zhang, W., Xin, F., & Jiang, M. (2020). Recent Advances of CRISPR/Cas9-Based Genetic Engineering and Transcriptional Regulation in Industrial Biology. Frontiers in Bioengineering and Biotechnology, 7. https://doi.org/10.3389/fbioe.2019.00459
Zhu, D., Adebisi, W. A., Ahmad, F., Sethupathy, S., Danso, B., & Sun, J. (2020). Recent Development of Extremophilic Bacteria and Their Application in Biorefinery. Frontiers in Bioengineering and Biotechnology, 8. https://doi.org/10.3389/fbioe.2020.00483
License
Copyright (c) 2025 Diah Miftahul Aini, Solina Balqis

This work is licensed under a Creative Commons Attribution 4.0 International License.
Jurnal Biologi Tropis is licensed under a Creative Commons Attribution 4.0 International License.
The copyright of the received article shall be assigned to the author as the owner of the paper. The intended copyright includes the right to publish the article in various forms (including reprints). The journal maintains the publishing rights to the published articles.
Authors are permitted to disseminate published articles by sharing the link/DOI of the article at the journal. Authors are allowed to use their articles for any legal purposes deemed necessary without written permission from the journal with an acknowledgment of initial publication to this journal.