Coulomb Stress Analysis of the West Coast Sumatra Earthquake on Mount Imun and Mount Helatoba
DOI:
10.29303/jpft.v11i1.8102Published:
2025-03-18Issue:
Vol. 11 No. 1 (2025): January-June (In Press)Keywords:
coulomb stress, imun, helatobaArticles
Downloads
How to Cite
Downloads
Metrics
Abstract
The island of Sumatra is a meeting area between the Indian Ocean plate in the South and the southwest edge of the Sunda Exposure, which is also the continental plate of Southeast Asia or the Eurasian Plate. The meeting of the plates makes the island of Sumatra an area prone to tectonic earthquakes, including Mount Imun and Helatoba which are located in the Tarutung basin. This study uses the Mohr-Coulomb model in the analysis of changes in coulomb stress. This modeling uses data from earthquakes that occurred on the West Coast of Sumatra which was then processed in coulomb 3.4 software. This modeling resulted in stress distribution in Imun and Helatoba. Coulomb stress changes until this time in Imun is 0.323 bar (2024) and coulomb stress change in Helatoba is 0.217 bar. The effect of the increase in coulomb stress (red lobe) originating from the earthquake on the west coast of Sumatra is triggering 2 tectonic earthquakes at the coordinates of Mount Imun in 2022 and triggering a tectonic earthquake at the coordinates of Helatoba in 2018.
References
Aldiss, D. T., & Ghazali, S. A. (1984). The regional geology and evolution of the Toba volcano-tectonic depression, Indonesia. Journal of the Geological Society, 141(3), 487–500. https://doi.org/10.1144/gsjgs.141.3.0487
Cattin, R., Pubellier, M., Rabaute, A., Delescluse, M., Vigny, C., Fleitout, L., & Dubernet, P. (2009). Stress change and effective friction coefficient along the Sumatra-Andaman-Sagaing fault system after the 26 December 2004 ( M. https://doi.org/10.1029/2008GC002167
Cocco, M. (2002). Pore pressure and poroelasticity effects in Coulomb stress analysis of earthquake interactions. Journal of Geophysical Research, 107(B2). https://doi.org/10.1029/2000jb000138
Deformasi, P., Mendatar, P., Pembentukan, T., Kecil, C., Di, P., Barat, S., & Jambi, D. A. N. (2006). Peran deformasi pensesaran mendatar terhadap pembentukan beberapa cekungan kecil paleogen di sumatera barat dan jambi. XVI(4), 232–240.
Gasparon, M. (2005). Quaternary volcanicity. Geological Society Memoir, 31, 120–130. https://doi.org/10.1144/GSL.MEM.2005.031.01.09
Goldberd Harmuda Duva Sinaga, Switamy Angnitha Purba, & Ady Frenly Simanullang. (2022). Coulomb Stress Analysis And Monte Carlo Simulation In Predicting Sinabung Pyroclastic Flow. World Journal of Advanced Research and Reviews, 13(1), 781–792. https://doi.org/10.30574/wjarr.2022.13.1.0085
Green, D. H., & Wang, H. F. (1986). ap. 51(4), 948–956.
Harris, R. A. (1998). Introduction to special section: Stress triggers, stress shadows, and implications for seismic hazard. Journal of Geophysical Research: Solid Earth, 103(10), 24347–24358. https://doi.org/10.1029/98jb01576
Hart, D. J., & Wang, H. F. (1995). limestone of the pore E = all K •,. Journal of Geophysical Research : Solid Earth, 100(95), 741–751.
Huchon, P., & Pichon, X. Le. (1984). Sunda Strait and Central Sumatra fault. November, 668–672.
Hughes, K. L. H., Masterlark, T., & Mooney, W. D. (2010). Poroelastic stress-triggering of the 2005 M8.7 Nias earthquake by the 2004 M9.2 Sumatra-Andaman earthquake. Earth and Planetary Science Letters, 293(3–4), 289–299. https://doi.org/10.1016/j.epsl.2010.02.043
Keranen, K. M., Savage, H. M., Abers, G. A., & Cochran, E. S. (2013). Potentially induced earthquakes in Oklahoma, USA: Links between wastewater injection and the 2011 Mw 5.7 earthquake sequence. Geology, 41(6), 699–702. https://doi.org/10.1130/G34045.1
King, G. C. P., Stein, R. S., & Jian Lin. (1994). Static stress changes and the triggering of earthquakes. Bulletin - Seismological Society of America, 84(3), 935–953. https://doi.org/10.1016/0148-9062(95)94484-2
Kototabang, S. P. A. G. (GAW) B., & Geofisika, B. M. K. dan. (2013). HUBUNGAN ANTARA GEMPABUMI DENGAN ERUPSI GUNUNGAPI STUDI KASUS ERUPSI GUNUNG SINABUNG TAHUN 2010 DAN 2013. Megasains, 4(Desember 2013), 117 – 123.
Mala, H. U., Mohamad, J. N., & Putra, V. G. V. (2020). IDENTIFIKASI POLA DISTRIBUSI STRESS COLOUMB PADA GEMPABUMI 2 AGUSTUS 2019 DI TUGU HILIR , INDONESIA. 5(1).
Muraoka, H., Takahashi, M., Sundhoro, H., Dwipa, S., Soeda, Y., & Momita, M. (2010). Geothermal Systems Constrained by the Sumatran Fault and Its Pull-Apart Basins in Sumatra , Western Indonesia. April, 25–29.
Parsons, T., Stein, R. S., Simpson, R. W., & Reasenberg, P. A. (1999). Stress sensitivity of fault seismicity: A comparison between limited-offset oblique and major strike-slip faults. Journal of Geophysical Research: Solid Earth, 104(B9), 20183–20202. https://doi.org/10.1029/1999jb900056
Rice, J. R. (1992). Fault Stress States, Pore Pressure Distributions, and the Weakness of the San Andreas Fault. International Geophysics, 51(C), 475–503. https://doi.org/10.1016/S0074-6142(08)62835-1
Sieh, K., & Natawidjaja, D. (2000). Neotectonics of the Sumatran fault, Indonesia. Journal of Geophysical Research: Solid Earth, 105(B12), 28295–28326. https://doi.org/10.1029/2000jb900120
Sinaga, G. H. D., Halawa, A., Prasetyo, R. A., & Alexander, I. J. (2024). Coulomb Stress Changes in the 2004 Aceh Earthquake on the Mount Sibualbuali and Mount Lubukraya. 10(2).
Sinaga, G. H. D., Loeqman, A., Siagian, R. C., & Sinaga, M. P. (2022). Analysis of Coulomb Stress Changes in Aceh Earthquake on Sibayak Volcano. Jurnal Pendidikan Fisika Dan Teknologi, 8(2), 217–227. https://doi.org/10.29303/jpft.v8i2.4409
Sinaga, G. H. D., & Nainggolan, J. (2023). Analysis of Sumatran Earthquake Coulomb Stress Changes in Geothermal Potential in Rianite, Samosir Regency. Jurnal Pendidikan Fisika Dan Teknologi, 9(2), 224–233. https://doi.org/10.29303/jpft.v9i2.5900
Sinaga, G. H. D., Tambunan, M. R., Loeqman, A., & Wibowo, A. (2021). Coulomb Stress Change of the 2004 Aceh Earthquake on Mount Sorik Marapi 2021. Jurnal Penelitian Fisika Dan Aplikasinya (JPFA), 11(2), 158–170. https://doi.org/10.26740/jpfa.v11n2.p158-170
Sinaga, G. H. D., Zarlis, M., Sitepu, M., Prasetyo, R. A., & Simanullang, A. (2017). Coulomb stress analysis of West Halmahera earthquake mw=7.2 to mount Soputan and Gamalama volcanic activities. IOP Conference Series: Earth and Environmental Science, 56(1), 3–10. https://doi.org/10.1088/1755-1315/56/1/012005
Siwi, P. W., Sriyanto, S. P. D., Rondonuwu, A. T., & Silangen, P. M. (2020). Perubahan Coulomb Stress Akibat Gempabumi Laut Maluku 7 Januari 2019. Jurnal Geosaintek, 6(3), 137. https://doi.org/10.12962/j25023659.v6i3.7030
Toda, S. (2005). Coulomb 3.3 Graphic-rich deformation and stress-change software for earthquake, tectonic, and volcano research and teachin. USGS Open-File Report, 63. http://www.coulombstress.org/download
Utama, G., Selama, L., Dan, T., Panjaitan, L. M., Fattah, E. I., Suhendi, C., Wulandari, R., & Perkasa, H. Y. (2020). Analisis Pergerakan Dan Akumulasi Coulomb Stress. 7(1), 35–39.
Wells, Donald L.Coppersmith, K. J. (1994). No New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Seismological Society of America, Berkeley, CA, United States. https://doi.org/10.1785/BSSA0840040974
Author Biographies
Goldberd Harmuda Duva Sinaga, Universitas HKBP Nommensen
Physics Education Study Program
Juliper Nainggolan, Universitas HKBP Nommensen
Physics Education Study Program
Hebron Pardede, Universitas HKBP Nommensen
Physics Education Study Program
License
Copyright (c) 2025 Goldberd Harmuda Duva Sinaga, Juliper Nainggolan, Hebron Pardede

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with Jurnal Pendidikan Fisika dan Teknologi (JPFT) agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License 4.0 International License (CC-BY-SA License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in Jurnal Pendidikan Fisika dan Teknologi (JPFT).
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).