KANDUNGAN KLOROFIL-a DAN FIKOERITRIN KAPPAPHYCUS ALVAREZII HASIL KULTUR JARINGAN DAN DIBUDIDAYAKAN PADA JARAK TANAM BERBEDA

Nunik Cokrowati, Salnida Yuniarti Lumbessy, Nanda Diniarti, Muhammad Supiandi, Bangun Bangun

Abstract

Abstrak: Pertumbuhan Kappaphycus alvaerzii dipengaruhi oleh jumlah klorofil-a, fioeritrin serta faktor kualitas lingkungan perairan. Penelitian ini bertujuan untuk mengetahui pengaruh jarak tanam yang berbeda terhadap kandungan klorofil-a dan fikoeritrin pada Kappaphycus alvarezii hasil kultur jaringan yang dibudidayakan pada patok dasar. Penelitian ini dilakukan di Perairan Pantai Siwak Desa Gerupuk Kecamatan Sengkol Kabupaten Lombok tengah. Budidaya Kappaphycus alvarezii dilakukan selama tiga puluh hari yaitu pada tanggal 10 Maret sampai dengan 9 April 2020 dengan menggunakan metode patok dasar. Rancangan penelitian yang digunakan adalah Rancangan acak lengkap dengan empat perlakuan yaitu perlakuan A (jarak tanam 10 cm), B (jarak tanam 15 cm), C (jarak tanam 20 cm), D (jarak tanam 25 cm sebagai kontrol). Bibit Kappaphycus alvarezii yang digunakan adalah hasil kultur jaringan yang telah diadaptasikan di pantai. Pengukuran klorofil-a dan fikoeretrin dilakukan dengan menggunakan spektrofotometri dan selanjutnya data dianalisa secara statistik. Hasil penelitian ini mendapatkan bahwa jarak tanam 25 cm (kontrol) menghasilkan kandungan klorofil-a tertinggi yaitu 5,4986 mg/l dengan kandungan fikoeritrin 0,0049 mg/l. Kandungan fikoeritrin tertinggi adalah jarak tanam 10 cm yaitu 0,0057 mg/l dengan kandungan klorofil-a sebanyak 4,7662 mg/l. Jarak tanam 25 cm dapat meningkatkan kandungan klorofil-a yang lebih baik karena dengan jarak tanam tersebut memberikan ruang bagi semua bagian thallus rumput laut K. alvarezii untuk bisa menerima cahaya matahari yang cukup dan sesuai untuk kebutuhannya. Jarak tanam 10 cm memberikan kandungan fikoeritrin yang tertinggi, yaitu 0,0057 mg/l  karena terlalu rapatnya jarak ini menyebabkan semakin banyak terbentuknya naungan sehingga mengurangi intensitas cahaya yang masuk ke dalam dinding sel rumput laut. Pada bagian thallus yang sedikit atau tidak menerima cahaya matahari ini diduga terjadi pembentukan fikoeritrin yang lebih banyak sebagai bentuk adaptasi thallus rumput laut pada kondisi tidak mendapatkan cahaya matahari yang optimal. Kesimpulan penelitian ini adalah jarak tanam mempengaruhi kandungan klorofil-a dan fikoeritrin. Jarak tanam yang ideal adalah 25 cm untuk menghasilkan kandungan klorofila-a yang optimum untuk mendukung pertumbuhan.

Kata kunci: Fotosintesis, cahaya matahari, talus, pertumbuhan, unsur hara.

Abstract: The growth of Kappaphycus alvarezii is influenced by the amount of chlorophyll-a, phycoerythrin and the quality factors of the aquatic environment. This study aims to determine the effect of different plant spacing on the content of chlorophyll-a and phycoerythrin on Kappaphycus alvarezii tissue culture results that are cultivated on the bottom-off method. This research was conducted in the waters of Siwak Beach, Gerupuk Village, Sengkol District, Central Lombok Regency. Kappaphycus alvarezii cultivation is conducted for thirty days, from March 10 to April 9, 2020, using the bottom-off method. The study design used was a completely randomized design with four treatments, namely treatment A (10 cm spacing), B (15 cm spacing), C (20 cm spacing), D (25 cm spacing as a control). Kappaphycus alvarezii seeds used are the result of tissue culture that has been adapted on the beach. Measurements of chlorophyll-a and phycoerythrin were carried out using spectrophotometry and then the data were analyzed statistically. The results of this study found that the spacing of 25 cm (control) resulted in the highest chlorophyll-a content of 5.4986 mg/l with a phycoerythrin content of 0.0049 mg/l. The highest content of phicoeritrin is a spacing of 10 cm which is 0.0057 mg/l with a chlorophyll-a content of 4.7662 mg/l. A spacing of 25 cm can increase the chlorophyll-a content better because the spacing gives space for all parts of the Kappaphycus alvarezii thallus to be able to receive sufficient sunlight and is suitable for their needs. A spacing of 10 cm gives the highest content of phycoerythrin, which is 0.0057 mg / l because of the too-close this distance causes more shading to form and thus reduces the intensity of light entering the seaweed cell wall. On the part of the thallus that receives little or no sunlight, it is thought that the formation of phycoerythrin is more likely to occur as a form of adaptation of the seaweed thallus in conditions that do not get optimal sunlight. This study concludes that the spacing affects the chlorophyll-a and phicoeritrin content. The ideal spacing is 25 cm to produce the optimum chlorophyll-a content to support growth.

Keywords: Photosynthesis, sunlight, thallus, growth, nutrients

Keywords

Photosynthesis; sunlight; thallus; growth; nutrients

Full Text:

PDF

References

Badan Standarisasi Nasional (2001). Produksi Bibit Rumput Laut Kotoni (Eucheuma cottonii) Bagian-1: Metode Lepas Dasar. BSN. Jakarta.

http://kkp.go.id/an-component/media/upload-gambar-pendukung/DIT%20PERBENIHAN/SNI%20Perbenihan/SNI%20Bibit%20Rumput%20Laut%20Cotoni/18671_SNI%207673.1-2011%20(LK-metode%20lepas%20dasar)_web.pdf

Bindu, M.S. & Ira, A.L. (2011). The Commercial Red Seaweed Kappaphycus alvarezii—an Overview on Farming and Environment. Journal of Applied Phycology. 23:789–796.

DOI 10.1007/s10811-010-9570-2.

Chen, Y. C. & M. C. Lee (2012). Double-Power Double-Heterostucture Light-Emitting Diodes in Microalgae, Spirulina platensis and Nannochloropsis oculata Cultures. Journal of Marine Science and Technology, 20(2): 233-236. https://pdfs.semanticscholar.org/81bc/a245c7aa840e7cb07469d650b2a7f4716a74.pdf

Chakdar, H., & S. Pabbi (2012). Extraction and Purification of Phycoerythrin From Anabaena variabilis (CCC421). Phykos. 42 (1): 25-31.

https://www.semanticscholar.org/paper/Extraction-and-purification-of-Phycoerycthrin-from-Chakdar-Pabbi/649db230c9e716cd03ccb2e39cc2eda14e96a0e8

Cokrowati, N., Dewi, N.S. & Rina, K. (2017). Growth Performance of Eucheuma cottonii by Immersing in Several Macroalgae Extract. Jurnal Aquacultura Indonesiana. 18(1): 26-29. ISSN 2477-69-39.

DOI: http://dx.org./10.21534/ai.v/8i/.72.

https://aquasiana.org/index.php/ai/article/view/72/95

Cokrowati, N. & Nanda, D. (2019). Komponen Sargassum aquifolium Sebagai Hormon Pemicu Tumbuh untuk Eucheuma cottonii. Jurnal Biologi Tropis. Volume 19 Nomor 2. Program Studi Pendidikan Biologi PMIPA FKIP. Universitas Mataram. DOI: 10.29303/jbt.v19i2.1107

Dawes, C.J. (1981). Marine Botany. A Wiley- International Sccience Publication. United States.

https://www.wiley.com/en-us/Marine+Botany%2C+2nd+Edition-p-9780471192084

Guan X., Qin S., Zhao F., Zhang X. & X. Tang (2007). Phycobilisomes Linker Family in Cyanobacterial Genomest: Divergence and Evolution. International Journal Biology Science. 3: 343-355. DOI: 10.7150/ijbs.3.434

Henley, D. & Felix, L.F. (2012). Physiological and Photomorphogenic Effect of Light on Marine Macrophytes. Seaweed Biology, Ecological Studies. Springer. Berlin. 3-7. DOI: 10.1016/j.aquabot.2003.11.004

Kim, J. K., G. P. Kreamer, C. D. Neefus, I. K. Chung & C. Yarish (2007). Effect of Temperature and Ammonium on Growth, Pigment Production and Nitrogen Uptake by Four Species of Porphyra (Bangiales, Rhodophyta) Native to The New England Coast. Journal of Applied Phycology, 19: 431-440. DOI: 10.1007/s10811-006-9150-7

Kawsar S., Yuki F., Ryo M., Hidetaro Y. & Yasuhiro O. (2011). Protein R-phycoerythrin from Marine Red Alga Amphiroa anceps: Extraction, Purification and Characterization. Phytologia Balcanica. 17(3):347-354.

https://pdfs.semanticscholar.org/64db/61287ab64acbbd6a52bdab653b3b42a357a6.pdf.

Liu, J.W., Dong, S.L., Liu, X.Y. & Ma, S. (2000). Responses of The Macroalga Gracilaria tenuistipitata var.liui (Rhodophyta) to Iron Stress. Journal of Applied Phycology 12, 605-612. https://link.springer.com/article/10.1023/A:1026523213818

Lumbessy, S. Y., Andayani, S., Nursyam, H. & Firdaus, M. (2018). Concentration of Liquid Pes Media on The Growth and Photosynthetic Pigments of Seaweeds Cotonii Propagule (Kappaphycus alvarezii Doty) Through Tissue Culture. Russian Journal of Agricultural and Socio-Economic Sciences. 3(75): 133 – 144. https://doi.org/10.18551/rjoas.2018-03.15

Laboratorium Balai Perikanan Budidaya Laut Lombok (2020). Prosedur Analisa Klorofil. Balai Budidaya Pengembangan Budidaya Laut Lombok. Sekotong Lombok Barat Nusa Tenggara Barat.https://kkp.go.id/djpb/bpbllombok/artikel/13972-sejarah-bpbl-lombok

Ming-Li, T., W. L. Chu & S. M. Phang (2010). Effect of Temperature Change on Physiology and Biochemistry of Algae: A Review. Malaysian Journal of Science, 29 (2) : 82-97.

DOI: 10.22452/mjs.vol29no2.1.

Mulyaningrum, S. R. H., Happy, N., Yenny, R. & A. Parenrengi (2012). Regenerasi Filamen Kalus Rumput Laut Kappaphycus alvarezii dengan Formulasi Zat Pengatur Tumbuh yang Berbeda. Jurnal Penelitian Perikanan. 1(1):52-60. https://jpp.ub.ac.id/index.php/jpp/article/view/118

Niu Jian-Feng, Guang-ce W. & Cheng-Kui T. (2006). Method for Large-Scale Isolation and Purification of R-phycoerythrin from Red Polysiphonia urceolata Grev. Protein Expression and Purification. 49:23-31.

DOI: 10.1016/j.pep.2006.02.001

Pugalendren S., B. Sarangam & R. Rengasamy (2012). Extraction of R-Phycoerythrin from Kappaphycus alvarezii (Doty) Doty ex Silva and Analyses of its Physico-Chemical Properties. Youth Education and Research Trust (YERT), 1(7) : 407-411. http://jairjp.com/DECEMBER/12%20SANGEETHA.pdf

Sulistiani, E. & Samsul, A.Y. (2014). Kultur Jaringan Rumput Laut Kotoni (Kappaphycus alvarezii). Seameo Biotrop. Bogor.

http://sl.biotrop.org/index.php?option=com_content&view=article&id=149&Itemid=141

Tandeau, Nicole. (2003). Phycobiliprotein and Phycobilisome: The Early Observations. Kluwer Academic Publisher. Netherland. Photosynthesis Research.76:197-205. https://link.springer.com/article/10.1023/A:1024954911473

Refbacks

  • There are currently no refbacks.