Literature Review: The Potential of Turkey (Meleagris gallopavo) as a Meat Producer
Authors
Mohammad Hasil TamzilDOI:
10.29303/jbt.v25i3.10022Published:
2025-09-30Issue:
Vol. 25 No. 3 (2025): Juli-SeptemberKeywords:
turkey, domestication, distribution, meat production, development potentialArticles
Downloads
How to Cite
Downloads
Abstract
The turkey (Meleagris gallopavo) is a large poultry species with unique phenotypic diversity, exotic characteristics, and distinctive meat flavor. Globally, it has been recognized as an important source of high-quality animal protein with relatively lowfat content. In Indonesia, turkey farming remains underdeveloped despite its considerable potential as an alternative meat source. This study is a literature review that synthesizes scientific findings from various references related to the domestication, distribution, and meat production potential of turkeys. Domestic turkeys are descendants of the wild turkey (M. gallopavo gallopavo), first domesticated in Central Mexico and parts of the United States. From there, domesticated stocks were introduced to Europe via Spanish colonial routes and subsequently spread worldwide. In Indonesia, turkeys have shown promising adaptability and potential for meat production. However, their development is hindered by limited access to high-quality breeding stocks, both in terms of quantity and genetic improvement. Turkeys possess significant potential to serve as an alternative poultry species for meat production in Indonesia. Addressing constraints in breeding stock availability and improving genetic resources are essential steps toward optimizing their productivity and sustainability.
References
Adeoye, A. A., Gunya, M. S., & Madzimure, J. (2023). Phenotypic characterisation of indigenous turkey populations in Sub-Saharan Africa. Tropical Animal Health and Production, 55(4), 100–111. https://doi.org/10.1007/s11250-023-03600-1
Adeoye, A. A., Udo, J. E., & Oladepo, A. D. (2019). Sexual dimorphism and phenotypic correlations among growth traits of exotic turkey (Meleagris gallopavo). Nigerian Journal of Animal Production. https://doi.org/10.51791/njap.vi.6488
Adeoye, A. A., Udoh, J. E., & Oladepo, A. D. (2020). Sexual differentiation and phenotypic correlations among biometric traits of Nigerian local turkey (Meleagris gallopavo). Nigerian Journal of Animal Production. Vol. 45, No. 1. https://doi.org/10.51791/njap.vi.6488
Aggrey, S. E., Rekaya, R., Maroof, A., Donoghue, D. J., Powell, J. L., & Emmerson, D. A. (2023). Growth modeling of turkeys: Comparison of nonlinear models for modern strains. Poultry Science, 102(7), 102679. https://doi.org/10.1016/j.psj.2023.102679
Agwunobi, L. N., Ugwu, S. O. C., & Ani, A. O. (2020). Growth and survival rate of local and exotic turkeys under extensive management system in southeastern Nigeria. Tropical Animal Health and Production, 52, 3421–3428. https://doi.org/10.1007/s11250-020-02380-4
Applegate, T. J., & Lilburn, M. S. (1998). Effect of hen age, body weight, and age at photostimulation. 1. Egg, incubation, and poult characteristics of commercial turkeys. Poultry Science, 77(3), 433–438. https://doi.org/10.1093/ps/77.3.433
Arakcheeva, E., Golovko, E., Zabashta, N., & Sinelshchikova, I. (2021). Indicators of meat productivity of turkeys of various crosses. E3S Web of Conferences, 273, 02019. https://doi.org/10.1051/e3sconf/202127302019
Barbut, S. (2015). PSE and DFD in Poultry. Meat Science, 111, 67–75.
Barbut, S. (2017). Poultry Products Processing and Quality Challenges. Meat Science, 132, 78–85.
Case, L. A., Miller, S. P., & Wood, B. J. (2010). Factors affecting breast meat yield in turkeys. World’s Poultry Science Journal, 66(2), 189–202. https://doi.org/10.1017/S0043933910000255
Chartrin, P., Bordeau, T., Godet, E., Méteau, K., Gicquel, J.-C., Drosnet, E., Brière, S., Bourin, M., & Baéza, E. (2019). Is meat of breeder turkeys so different from that of standard turkeys? Foods, 8(1), 8. https://doi.org/10.3390/foods8010008
Choi, Y. M., & Kim, B. C. (2009). Muscle fiber characteristics, myofibrillar protein isoforms, and meat quality. Livestock Science, 122(2–3), 105–118. https://doi.org/10.1016/j.livsci.2008.08.015
Das, S. C., Yahya, M., Hasan, M. S., Hossain, M. A., Akter, T., & Sultana, M. (2018). Growth performance of white, black and bronze color heritage turkeys under semi-intensive system. Journal of Bangladesh Agricultural University, 16(3), 471–477.
Davis, M., Stevenson, R., Ford, E., Erasmus, M., & Zuelly, S. M. S. (2022). Heat stress and an immune challenge influence turkey meat quality, but conspecific-directed pecking behavior does not. Foods (Basel, Switzerland), 11(15), 2203. https://doi.org/10.3390/foods11152203
De Paula Dorigam, J. C., Matias Djalma Appelt, M. D., Maiorka, A., Muramatsu, K., Sens, R. F., Rocha, C., & Dahlke, F. (2016). Evaluation of the digestible lysine requirements in female turkeys from 0 to 68 days of age. Animal Feed Science and Technology, 221, 137-146.
Djebbi, A., M’hamdi, N., Haddad, I., & Chriki, A. (2014). Phenotypic characterization of the indigenous turkey (Meleagris gallopavo) in the North West regions of Tunisia. Sci. Agri., 2(1), 51-56.
Dudusola, I. O., Bashiru, H. A., & Awojimi, I. (2020). Morphometric traits of turkey (Meleagris gallopavo) as affected by genotype and sex. Nigerian Journal of Animal Production, 47(4), 1-6. https://doi.org/10.51791/njap.v47i4.77
Ersoy, E., Mendeş, M., & Aktan, S. S. (2006). Growth curve establishment for American Bronze turkeys. Archiv für Tierzucht (Arch. Tierz), Dummerstorf, 49(3), 293-299.
Ferreira, V., Barbosa, J., Silva, J., & Gibbs, P. (2021). Dark, firm, and dry (DFD) meat in beef: causes, consequences and strategies to prevent and control the problem. Meat Science, 181, 108611. https://doi.org/10.1016/j.meatsci.2021.108611
Flannery, K. V. (2002). The origins of the domesticated turkey. Proceedings of the National Academy of Sciences, 99(23), 15276–15278. https://doi.org/10.1073/pnas.222389599
Flores, K. R., & Grimes, J. L. (2022). Performance and processing yield comparisons of Large White male turkeys by genetic lines, sources, and seasonal rearing. Poultry Science, 101(4), 101700. https://doi.org/10.1016/j.psj.2022.101700
Genchev, A. (2021). Meat quality of Japanese quail: A review. World’s Poultry Science Journal, 77(4), 767–784. https://doi.org/10.1080/00439339.2021.1932954
Gunya, M. S., Dzomba, E. F., & Muchadeyi, F. C. (2020). Phenotypic diversity of indigenous poultry genetic resources in Southern Africa. Poultry Science, 99(2), 868–882. https://doi.org/10.1016/j.psj.2019.11.014
Jankowski, J., Mikulski, D., Mikulska, M., Ognik, K., Całyniuk, Z., Mróz, E., & Zduńczyk, Z. (2020). The effect of different dietary ratios of arginine, methionine, and lysine on the performance, carcass traits, and immune status of turkeys. Poultry Science, 99(2), 1028–1037. https://doi.org/10.1016/j.psj.2019.10.008
Juskiewicz, J., Jankowski, J., Zielinski, H., Zdunczyk, Z., Mikulski, D., Antoszkiewicz, Z., Kosmala, M., & Zdunczyk, P. (2017). The fatty acid profile and oxidative stability of meat from turkeys fed diets enriched with n-3 polyunsaturated fatty acids and dried fruit pomaces as a source of polyphenols. PLOS ONE, 12(1), e0170074. https://doi.org/10.1371/journal.pone.0170074
Kattanek, M., Richardson, K. C., Hafez, H. M., Plendl, J., & Hünigen, H. (2017). Comparative quantitative studies on the microvasculature of the heart of a highly selected meat-type and a wild-type turkey line. PLOS ONE, 12(1), e0170858. https://doi.org/10.1371/journal.pone.0170858
Konieczka, P., Czauderna, M., & Smulikowska, S. (2017). The enrichment of chicken meat with omega-3 fatty acids by dietary fish oil or its mixture with rapeseed or flaxseed—Effect of feeding duration. Animal Feed Science and Technology, 223, 42–52. https://doi.org/10.1016/j.anifeedsci.2016.10.023
Kuttappan, V. A., Smith, J. D., Lee, Y. S., Owens, C. M., & McKee, S. R. (2017). Poultry meat quality: Influencing factors. Poultry Science, 96(3), 686–693. https://doi.org/10.3382/ps/pew362
Lamas, A., (2024). Nutritional composition and technological properties of organic vs conventional turkey meat. Foods, 13. https://doi.org/10.3390/foods13123456
Laryea, D. O., (2024). Phenotypic characterization of indigenous turkeys in Ghana. Journal of Experimental Agriculture International, 46(2), 24–37. https://doi.org/10.9734/jeai/2024/v46i22371
Laryea, E. S., Alhassan, M., & Owusu, A. (2024). Plumage color variation and productivity traits in backyard turkeys. Journal of Livestock Science, 15(2), 142–150.
Minvielle, F. (2021). Genetics and domestication of poultry: Comparative phenotypes. Poultry Science, 100(3), 101121. https://doi.org/10.1016/j.psj.2020.12.021
Musbawandi, H., Tamzil, M. H., & Indarsih, B. (2023). Lohmann broiler growth performance using positive pressure barn system. Animal and Veterinary Sciences, 11(5), 764–772. https://doi.org/10.17582/journal.aavs/2023/11.5.764.772
Narinç, D., Öksüz Narinç, N., & Aygün, A. (2017). Growth curve analyses in poultry science. World’s Poultry Science Journal, 73(2), 395–408. https://doi.org/10.1017/S0043933916001082
Rachmawati, L. P., Sjofjan, O., & Natsir, M. H. (2016). Effect of elevation altitude rearing and population on carcass quality of the broilers. IOSR Journal of Agriculture and Veterinary Science, 9(4), 36–41. https://doi.org/10.9790/2380-0904013641
Siopes, T. D. (2010). Initiation of egg production by turkey breeder hens: Sexual maturation and age at lighting. Poultry Science, 89(7), 1490–1496. https://doi.org/10.3382/ps.2009-00463
Smith, A. F. (2006). The Turkey: An American Story. University of Illinois Press.
Speller, C. F., Kemp, B. M., Wyatt, S. D., Monroe, C., Lipe, W. D., Arndt, U. M., & Yang, D. Y. (2010). Ancient mitochondrial DNA analysis reveals complexity of indigenous North American turkey domestication. Proceedings of the National Academy of Sciences, 107(7), 2807–2812. https://doi.org/10.1073/pnas.0909724107
Stover, K. K., Walker, J. A., & McCormick, S. D. (2018). Musculoskeletal growth and center of mass shifts in domestic vs wild turkeys. Ecology and Evolution, 8(6), 3063–3073. https://doi.org/10.1002/ece3.3862
Tamzil, M. H. (2014). Stres panas pada unggas: Metabolisme, akibat dan upaya penanggulangannya. WARTAZOA, 24(2), 57–66. https://doi.org/10.14334/wartazoa.v24i2.1049
Tamzil, M. H., Hardjosworo, P. S., Sihombing, D. T. H., & Manalu, W. (1999). Pengaruh pembatasan pemberian pakan terhadap penundaan masak kelamin itik lokal yang cenderung masak kelamin dini. Media Veteriner, 6(2), 5–9.
Tamzil, M. H., Haryani, N. K. D., & Indarsih, B. (2016). Reduced expression of heat shock protein (HSP) 70 gene by ascorbic acid supplementation in broiler chickens exposed to transportation stress to maintain the quality of meat and hematological parameters. International Journal of Poultry Science, 15(11), 432–441. https://doi.org/10.3923/ijps.2016.432.441
Tamzil, M. H., Ichsan, M., Jaya, I. S. N., & Taqiuddin, M. (2015). Growth rate, carcass weight and percentage weight of carcass parts of laying-type cockerels, Kampong chicken and Arabic chicken in different ages. Pakistan Journal of Nutrition, 14(7), 377–382. https://doi.org/10.3923/pjn.2015.377.382
Tamzil, M. H., Noor, R. R., Hardjosworo, P. S., Manalu, W., & Sumantri, C. (2014). Hematological response of chickens with different heat shock protein 70 genotypes to acute heat stress. International Journal of Poultry Science, 13(5), 264–272. https://doi.org/10.3923/ijps.2014.14.20
Thornton, E. K., Emery, K. F., Steadman, D. W., Speller, C. F., Yang, D. Y., & Tito, R. Y. (2012). Earliest Mexican turkeys (Meleagris gallopavo) in the Maya region: Implications for pre-Hispanic animal trade and long-distance exchange. Proceedings of the National Academy of Sciences, 109(32), 13915–13920. https://doi.org/10.1073/pnas.1209635110
United States Department of Agriculture. (2022). Heritage and commercial turkey breeds: Breed characteristics and management. USDA Factsheet.
van der Klein, S. A. S., Willems, O. W., & Zuidhof, M. J. (2023). Multiphasic mixed growth models for turkeys. Journal of Animal Science, 101, skad094. https://doi.org/10.1093/jas/skad094
Wang, J., Yan, Y., Peng, X., Gao, X., Luo, Q., Luo, Z., Wang, K., & Liu, X. (2025). Lipidomics to meat quality: A review on texture and flavor in livestock and poultry. Food Chemistry, 492(1), 145402. https://doi.org/10.1016/j.foodchem.2025.145402
Wang, L., Chen, X., Yang, Y., Ye, S., Gong, P., Wang, Y., Zhai, M., Wu, Y., & Qian, Y. (2025). The effect of duck breeds on carcass composition and meat quality at different slaughter ages. Animals, 15(14). https://doi.org/10.3390/ani15141456
Wolc, A., Bednarczyk, M., Lisowski, M., & Szwaczkowski, T. (2010). Genetic relationships among time of egg formation, clutch traits and traditional selection traits in laying hens. Journal of Animal and Feed Sciences, 19(3), 452–459. https://doi.org/10.22358/jafs/66309/2010
Yilmaz, O., Denk, H., & Kucuk, M. (2011). Growth performance and mortality in hybrid converter turkeys reared at high altitude region. Bulgarian Journal of Agricultural Science, 17(2), 241–245.
Zhang, Y., Zhu, L., & Henckel, P. (2017). Effect of pH and postmortem aging on water-holding capacity, color, and texture of pork. Meat Science, 123, 145–152. https://doi.org/10.1016/j.meatsci.2016.09.005
License
Copyright (c) 2026 Mohammad Hasil Tamzil

This work is licensed under a Creative Commons Attribution 4.0 International License.

Jurnal Biologi Tropis is licensed under a Creative Commons Attribution 4.0 International License.
The copyright of the received article shall be assigned to the author as the owner of the paper. The intended copyright includes the right to publish the article in various forms (including reprints). The journal maintains the publishing rights to the published articles.
Authors are permitted to disseminate published articles by sharing the link/DOI of the article at the journal. Authors are allowed to use their articles for any legal purposes deemed necessary without written permission from the journal with an acknowledgment of initial publication to this journal.
























