Literature Review: Immunopathobiology of AIDS-related Kaposi’s Sarcoma
Authors
Nia Ardelia RahmadaniDOI:
10.29303/jbt.v25i4a.10525Published:
2025-11-30Issue:
Vol. 25 No. 4a (2025): Special IssueKeywords:
AIDS, Human Herpesvirus 8 (HHV-8), immunopathobiology, Kaposi’s Sarcoma (KS)Articles
Downloads
How to Cite
Downloads
Abstract
Kaposi's Sarcoma (KS) is an angioproliferative malignancy closely associated with Acquired Immunodeficiency Syndrome (AIDS), primarily caused by Human Herpesvirus 8 (HHV-8) infection in individuals with immunosuppression due to Human Immunodeficiency Virus (HIV). The reduction of CD4⁺ T cells by HIV causes cellular immunity disorders that allow HHV-8 to survive in both latent and lytic phases and trigger tumor formation through immune system modulation. This review aims to understand the immunopathobiology of AIDS-related KS. This study is a narrative literature review compiled from various scientific articles obtained from PubMed, Google Scholar, and ScienceDirect. Various literature indicates that HHV-8 is able to evade the immune response by suppressing the Toll-like receptor (TLR) pathway, reducing Major Histocompatibility Complex (MHC) expression, and producing cytokine and chemokine homologs that support the tumor microenvironment. Immunosuppression due to HIV further strengthens these mechanisms and plays an important role in the formation of KS lesions. Understanding the immunopathobiology mechanisms of AIDS-related KS provides a scientific basis for the development of more effective prevention, early detection, and immunomodulatory therapy strategies in the future.
References
Babu, H., Ambikan, A. T., Gabriel, E. E., Svensson Akusjärvi, S., Palaniappan, A. N., Sundaraj, V., Mupanni, N. R., Sperk, M., Cheedarla, N., Sridhar, R., Tripathy, S. P., Nowak, P., Hanna, L. E., & Neogi, U. (2019). Systemic Inflammation and the Increased Risk of Inflamm-Aging and Age-Associated Diseases in People Living With HIV on Long Term Suppressive Antiretroviral Therapy. Frontiers in immunology, 10. doi: 10.3389/fimmu.2019.01965
Beldi-Ferchiou, A., Lambert, M., Dogniaux, S., Vély, F., Vivier, E., Olive, D., Dupuy, S., Levasseur, F., Zucman, D., Lebbé, C., Sène, D., Hivroz, C., & Caillat-Zucman, S. (2016). PD-1 mediates functional exhaustion of activated NK cells in patients with Kaposi sarcoma. Oncotarget, 7(45), 72961-72977. doi: 10.18632/oncotarget.12150
Bower, M., Dalla Pria, A., Coyle, C., Andrews, E., Tittle, V., Dhoot, S., & Nelson, M. (2014). Prospective stage-stratified approach to AIDS-related Kaposi's sarcoma. Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 32(5), 409-414. doi: 10.1200/JCO.2013.51.6757
Broussard, G., & Damania, B. (2020). KSHV: Immune Modulation and Immunotherapy. Frontiers in immunology, 10. doi: 10.3389/fimmu.2019.03084
Cesarman, E., Damania, B., Krown, S. E., Martin, J., Bower, M., & Whitby, D. (2019). Kaposi sarcoma. Nature reviews. Disease primers, 5(1), 9. doi: 10.1038/s41572-019-0060-9
Chen, D. S., & Mellman, I. (2013). Oncology meets immunology: the cancer-immunity cycle. Immunity, 39(1), 1-10. doi: 10.1016/j.immuni.2013.07.012
Coffin, J., & Swanstrom, R. (2013). HIV pathogenesis: dynamics and genetics of viral populations and infected cells. Cold Spring Harbor perspectives in medicine, 3(1). doi: 10.1101/cshperspect.a012526
Cousins, E., Gao, Y., Sandford, G., & Nicholas, J. (2014). Human herpesvirus 8 viral interleukin-6 signaling through gp130 promotes virus replication in primary effusion lymphoma and endothelial cells. Journal of virology, 88(20), 12167-12172. doi: 10.1128/JVI.01751-14
Dalla Pria, A., Pinato, D. J., Bracchi, M., & Bower, M. (2019). Recent advances in HIV-associated Kaposi sarcoma. F1000Research, 8. doi: 10.12688/f1000research.17401.1
Deeks S. G. (2011). HIV infection, inflammation, immunosenescence, and aging. Annual review of medicine, 62, 141-155. doi: 10.1146/annurev-med-042909-093756
Frazao, A., Rethacker, L., Messaoudene, M., Avril, M. F., Toubert, A., Dulphy, N., & Caignard, A. (2019). NKG2D/NKG2-Ligand Pathway Offers New Opportunities in Cancer Treatment. Frontiers in immunology, 10. doi: 10.3389/fimmu.2019.00661
Fu, L., Tian, T., Wang, B., Lu, Z., Gao, Y., Sun, Y., Lin, Y. F., Zhang, W., Li, Y., & Zou, H. (2023). Global patterns and trends in Kaposi sarcoma incidence: a population-based study. The Lancet. Global health, 11(10). doi: 10.1016/S2214-109X(23)00349-2
Host, K. M., Jacobs, S. R., West, J. A., Zhang, Z., Costantini, L. M., Stopford, C. M., Dittmer, D. P., & Damania, B. (2017). Kaposi's Sarcoma-Associated Herpesvirus Increases PD-L1 and Proinflammatory Cytokine Expression in Human Monocytes. mBio, 8(5). doi: 10.1128/mBio.00917-17
Hokello, J., Tyagi, K., Owor, R. O., Sharma, A. L., Bhushan, A., Daniel, R., & Tyagi, M. (2024). New Insights into HIV Life Cycle, Th1/Th2 Shift during HIV Infection and Preferential Virus Infection of Th2 Cells: Implications of Early HIV Treatment Initiation and Care. Life (Basel, Switzerland), 14(1). doi: 10.3390/life14010104
Hunte, R., Alonso, P., Thomas, R., Bazile, C. A., Ramos, J. C., van der Weyden, L., Dominguez-Bendala, J., Khan, W. N., & Shembade, N. (2018). CADM1 is essential for KSHV-encoded vGPCR-and vFLIP-mediated chronic NF-κB activation. PLoS pathogens, 14(4). doi: 10.1371/journal.ppat.1006968
Jones, R. B., & Walker, B. D. (2016). HIV-specific CD8⁺ T cells and HIV eradication. The Journal of clinical investigation, 126(2), 455-463. doi: 10.1172/JCI80566
Kaiko, G. E., Horvat, J. C., Beagley, K. W., & Hansbro, P. M. (2008). Immunological decision-making: how does the immune system decide to mount a helper T-cell response?. Immunology, 123(3), 326-338. doi: 10.1111/j.1365-2567.2007.02719.x
Lackner, A. A., Lederman, M. M., & Rodriguez, B. (2012). HIV pathogenesis: the host. Cold Spring Harbor perspectives in medicine, 2(9). doi: 10.1101/cshperspect.a007005
Lee, S. H., Toth, Z., Wong, L. Y., Brulois, K., Nguyen, J., Lee, J. Y., Zandi, E., & Jung, J. U. (2012). Novel Phosphorylations of IKKγ/NEMO. mBio, 3(6). doi: 10.1128/mBio.00411-12
Losay, V. A., & Damania, B. (2025). Unraveling the Kaposi Sarcoma-Associated Herpesvirus (KSHV) Lifecycle: An Overview of Latency, Lytic Replication, and KSHV-Associated Diseases. Viruses, 17(2). doi: 10.3390/v17020177
Lüttichau, H. R., Johnsen, A. H., Jurlander, J., Rosenkilde, M. M., & Schwartz, T. W. (2007). Kaposi sarcoma-associated herpes virus targets the lymphotactin receptor with both a broad spectrum antagonist vCCL2 and a highly selective and potent agonist vCCL3. The Journal of biological chemistry, 282(24), 17794-17805. doi: 10.1074/jbc.M702001200
Manes, T. D., Hoer, S., Muller, W. A., Lehner, P. J., & Pober, J. S. (2010). Kaposi's sarcoma-associated herpesvirus K3 and K5 proteins block distinct steps in transendothelial migration of effector memory CD4+ T cells by targeting different endothelial proteins. Journal of immunology (Baltimore, Md. : 1950), 184(9), 5186-5192. doi: 10.4049/jimmunol.0902938
Martínez-Lostao, L., Anel, A., & Pardo, J. (2015). How Do Cytotoxic Lymphocytes Kill Cancer Cells?. Clinical cancer research : an official journal of the American Association for Cancer Research, 21(22), 5047-5056. doi: 10.1158/1078-0432.CCR-15-0685
Omar, A., Marques, N., & Crawford, N. (2024). Cancer and HIV: The Molecular Mechanisms of the Deadly Duo. Cancers, 16(3). doi: 10.3390/cancers16030546
Peprah, S., Engels, E. A., Horner, M. J., Monterosso, A., Hall, H. I., Johnson, A. S., Pfeiffer, R. M., & Shiels, M. S. (2021). Kaposi Sarcoma Incidence, Burden, and Prevalence in United States People with HIV, 2000-2015. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology, 30(9), 1627-1633. doi: 10.1158/1055-9965.EPI-21-0008
Poorolajal, J., Hooshmand, E., Mahjub, H., Esmailnasab, N., & Jenabi, E. (2016). Survival rate of AIDS disease and mortality in HIV-infected patients: a meta-analysis. Public health, 139, 3-12. doi: 10.1016/j.puhe.2016.05.004
Pontejo, S. M., & Murphy, P. M. (2017). Chemokines encoded by herpesviruses. Journal of leukocyte biology, 102(5), 1199-1217. doi: 10.1189/jlb.4RU0417-145RR
Sakakibara, S., Espigol-Frigole, G., Gasperini, P., Uldrick, T. S., Yarchoan, R., & Tosato, G. (2013). A20/TNFAIP3 inhibits NF-κB activation induced by the Kaposi's sarcoma-associated herpesvirus vFLIP oncoprotein. Oncogene, 32(10), 1223-1232. doi: 10.1038/onc.2012.145
Salimi-Jeda, A., Badrzadeh, F., Esghaei, M., & Abdoli, A. (2021). The role of telomerase and viruses interaction in cancer development, and telomerase-dependent therapeutic approaches. Cancer Treatment and Research Communications, 27. doi: 10.1016/j.ctarc.2021.100323
Shamay, M., Liu, J., Li, R., Liao, G., Shen, L., Greenway, M., Hu, S., Zhu, J., Xie, Z., Ambinder, R. F., Qian, J., Zhu, H., & Hayward, S. D. (2012). A protein array screen for Kaposi's sarcoma-associated herpesvirus LANA interactors links LANA to TIP60, PP2A activity, and telomere shortening. Journal of virology, 86(9), 5179-5191. doi: 10.1128/JVI.00169-12
Sharp, P. M., & Hahn, B. H. (2011). Origins of HIV and the AIDS pandemic. Cold Spring Harbor perspectives in medicine, 1(1), doi: 10.1101/cshperspect.a006841
Stănescu, L., Foarfă, C., Georgescu, A. C., & Georgescu, I. (2007). Kaposi's sarcoma associated with AIDS. Romanian journal of morphology and embryology = Revue roumaine de morphologie et embryologie, 48(2), 181-187.
Sun, Z., Jha, H. C., Pei, Y. G., & Robertson, E. S. (2016). Major Histocompatibility Complex Class II HLA-DRα Is Downregulated by Kaposi's Sarcoma-Associated Herpesvirus-Encoded Lytic Transactivator RTA and MARCH8. Journal of virology, 90(18), 8047-8058. doi: 10.1128/JVI.01079-16
Suresh, R., & Mosser, D. M. (2013). Pattern recognition receptors in innate immunity, host defense, and immunopathology. Advances in physiology education, 37(4), 284-291. doi: 10.1152/advan.00058.2013
Walker, B., & McMichael, A. (2012). The T-cell response to HIV. Cold Spring Harbor perspectives in medicine, 2(11). doi: 10.1101/cshperspect.a007054
West, J. A., & Damania, B. (2010). Kaposi's sarcoma-associated herpesvirus and innate immunity. Future virology, 5(2), 185-196. doi: 10.2217/fvl.10.5
Yuan, X., Larsson, C., & Xu, D. (2019). Mechanisms underlying the activation of TERT transcription and telomerase activity in human cancer: old actors and new players. Oncogene, 38(34), 6172-6183. doi: 10.1038/s41388-019-0872-9
License
Copyright (c) 2025 Nia Ardelia Rahmadani

This work is licensed under a Creative Commons Attribution 4.0 International License.

Jurnal Biologi Tropis is licensed under a Creative Commons Attribution 4.0 International License.
The copyright of the received article shall be assigned to the author as the owner of the paper. The intended copyright includes the right to publish the article in various forms (including reprints). The journal maintains the publishing rights to the published articles.
Authors are permitted to disseminate published articles by sharing the link/DOI of the article at the journal. Authors are allowed to use their articles for any legal purposes deemed necessary without written permission from the journal with an acknowledgment of initial publication to this journal.
























