Application and Evaluation of The Loop Mediated Isothermal Amplification (LAMP) Method to Detect Wild Boar in Meatball
Authors
Linda Wati , Sony SuhandonoDOI:
10.29303/jbt.v25i4b.10974Published:
2025-12-30Issue:
Vol. 25 No. 4b (2025): Special IssueKeywords:
Halal, LAMP, Meatball, Wild boar, Sus scrofa, Sus barbatusArticles
Downloads
How to Cite
Downloads
Abstract
The content of meat used in processed meat products such as meatballs must be verified to ensure that the food is halal. Generally, meatballs are made from beef, chicken, and fish. However, some fraudulent practices often occur in the field, which is mixing meatballs with other meats such as wild boar. DNA-based methods can be used because they can sensitively identify the type of meat in meatballs, such as the Loop Mediated Isothermal Amplification (LAMP) method. The LAMP primers designed in this study was tested on DNA isolated from samples of meatballs containing wild boar, chicken, beef, lamb, and rat meat. Positive results were visualized using SYBR green dye, with positive results showing a color change from orange to green. The objective of this study was to design primers capable of detecting wild boar meat DNA in meatballs using simple equipment. The specific wild boar primers successfully detected wild boar meat DNA from meatballs, but the results often showed false positives. Thus, the primers designed in this study are not yet stable and applicable for use in wild boar DNA testing. The combination of the LAMP method with other methods is expected to reduce false positives from the LAMP method.
References
Alhamid, G., Tombuloglu, H., & Al-Suhaimi, E. (2023). Development of loop-mediated isothermal amplification (LAMP) assays using five primers reduces the false-positive rate in COVID-19 diagnosis. Scientific Reports, 13(1), 5066. https://doi.org/10.1038/s41598-023-31760-z
Arini, R. L. (2018). Analisis Daging Celeng (Sus scrofa) dalam Bakso dengan Real-Time Polymerase Chain Reaction (Real-Time PCR) untuk Autentikasi Halal [Skripsi]. Universitas Gadjah Mada.
Aydin, S., Emre, E., Ugur, K., Aydin, M. A., Sahin, İ., Cinar, V., & Akbulut, T. (2025). An overview of ELISA: A review and update on best laboratory practices for quantifying peptides and proteins in biological fluids. Journal of International Medical Research, 53(2), 03000605251315913. https://doi.org/10.1177/03000605251315913
Cahyaningsari, D., Latif, H., & Sudarnika, E. (2019). Identifikasi penambahan daging babi pada pangan berbahan dasar daging sapi menggunakan ELISA dan qPCR. Acta Veterinaria Indonesiana, 7(2), 17–25. https://doi.org/10.29244/avi.7.2.17-25.
Carter, M., Essner, R., Goldstein, N., & Iyer, M. (2022). Molecular Cloning and Recombinant DNA Technology. Dalam Guide to Research Techniques in Neuroscience (hlm. 227–243). Elsevier. https://doi.org/10.1016/B978-0-12-818646-6.00014-2
Coleman, W. B., & Tsongalis, G. J. (2017). Laboratory Approaches in Molecular Pathology—The Polymerase Chain Reaction. Dalam Diagnostic Molecular Pathology (hlm. 15–23). Elsevier. https://doi.org/10.1016/B978-0-12-800886-7.00002-9
Cravero, D., Cerutti, F., Maniaci, M. G., Barzanti, P., Scaramagli, S., Riina, M. V., Ingravalle, F., Acutis, P. L., & Peletto, S. (2019). Evaluation of DNA isolation procedures from meat-based foods and development of a DNA quality score. LWT, 106, 64–71. https://doi.org/10.1016/j.lwt.2019.02.028
Elyasigorji, Z., Izadpanah, M., Hadi, F., & Zare, M. (2023). Mitochondrial genes as strong molecular markers for species identification. The Nucleus, 66(1), 81–93. https://doi.org/10.1007/s13237-022-00393-4
Foo, P. C., Nurul Najian, A. B., Muhamad, N. A., Ahamad, M., Mohamed, M., Yean Yean, C., & Lim, B. H. (2020). Loop-mediated isothermal amplification (LAMP) reaction as viable PCR substitute for diagnostic applications: A comparative analysis study of LAMP, conventional PCR, nested PCR (nPCR) and real-time PCR (qPCR) based on Entamoeba histolytica DNA derived from faecal sample. BMC Biotechnology, 20(1), 34. https://doi.org/10.1186/s12896-020-00629-8
Galal‐Khallaf, A., Hussein, D., & El‐Sayed Hassab El‐Nabi, S. (2021). Single nucleotide polymorphism‐based methodology for authentication of bovine, caprine, ovine, camel, and donkey meat cuts. Journal of Food Science, 86(10), 4444–4456. https://doi.org/10.1111/1750-3841.15885
Garg, N., Ahmad, F. J., & Kar, S. (2022). Recent advances in loop-mediated isothermal amplification (LAMP) for rapid and efficient detection of pathogens. Current Research in Microbial Sciences, 3, 100120. https://doi.org/10.1016/j.crmicr.2022.100120
Ghosh, R., Nagavardhini, A., Sengupta, A., & Sharma, M. (2015). Development of Loop-Mediated Isothermal Amplification (LAMP) assay for rapid detection of Fusarium oxysporum f. Sp. Ciceris—Wilt pathogen of chickpea. BMC Research Notes, 8(1), 40. https://doi.org/10.1186/s13104-015-0997-z
Habibi, P., Ostad, S. N., Heydari, A., Aliebrahimi, S., Montazeri, V., Foroushani, A. R., Monazzam, M. R., Ghazi-Khansari, M., & Golbabaei, F. (2022). Effect of heat stress on DNA damage: A systematic literature review. International Journal of Biometeorology, 66(11), 2147–2158. https://doi.org/10.1007/s00484-022-02351-w
Hardinge, P., & Murray, J. A. H. (2019). Reduced False Positives and Improved Reporting of Loop-Mediated Isothermal Amplification using Quenched Fluorescent Primers. Scientific Reports, 9(1), 7400. https://doi.org/10.1038/s41598-019-43817-z
Hellberg, R. S. (2021). DNA-based techniques for seafood species authentication. Dalam Advances in Food and Nutrition Research (Vol. 95, hlm. 207–255). Elsevier. https://doi.org/10.1016/bs.afnr.2020.09.001
Hellberg, R. S., Isaacs, R. B., & Hernandez, E. L. (2019). Identification of shark species in commercial products using DNA barcoding. Fisheries Research, 210, 81–88. https://doi.org/10.1016/j.fishres.2018.10.010
Hersanty, N. A. D., Farmayanti, N., & Dewi, T. G. (2023). Kepuasan dan Loyalitas Konsumen Restoran Bakso Bakwan Malang. Jurnal Agribisnis Indonesia (Journal of Indonesian Agribusiness), 11(2), 326–340. https://doi.org/10.29244/jai.2023.11.2.326-340
Kim, K. H., & Kang, T. S. (2024). Development of advanced PCR-based methods for accurate identification and authentication of commercial shrimp products. Food Control, 159, 110288. https://doi.org/10.1016/j.foodcont.2024.110288
Lai, M. Y., Ooi, C. H., & Lau, Y. L. (2021). Validation of SYBR green I based closed‐tube loop‐mediated isothermal amplification (LAMP) assay for diagnosis of knowlesi malaria. Malaria Journal, 20(1), 166. https://doi.org/10.1186/s12936-021-03707-0
Laksanawati, T. A., Khirzin, M. H., Meidayanti, K., Kusherawati, P. A., Kusuma, H. S., Darmokoesoemo, H., & Iqbal, M. (2024). Prediction of shelf life and sensory qualities of beef meatball with biodegradable taro starch-duck bone gelatin packaging at different storage temperatures. Applied Food Research, 4(1), 100402. https://doi.org/10.1016/j.afres.2024.100402
Meilinia, S. M., Achmad, A. B., Diyantoro, D., & Chrismanto, D. (2021). Identifikasi Kandungan Komponen Babi pada Daging Curah dan Produk Olahan Daging Menggunakan Metode ELISA Sandwich di Balai Besar Veteriner Wates. VITEK: Bidang Kedokteran Hewan, 11(2). https://doi.org/10.30742/jv.v11i2.78
Moehling, T. J., Choi, G., Dugan, L. C., Salit, M., & Meagher, R. J. (2021). LAMP Diagnostics at the Point-of-Care: Emerging Trends and Perspectives for the Developer Community. Expert Review of Molecular Diagnostics, 21(1), 43–61. https://doi.org/10.1080/14737159.2021.1873769
Mualim, M., Latif, H., Pisestyani, H., & Rahayu, P. (2024). Analysis of species adulteration in beef sausage using real-time polymerase chain reaction in Makassar, Indonesia. Veterinary World, 2355–2364. https://doi.org/10.14202/vetworld.2024.2355-2364
Rohman, A., & Fadzillah, N. A. (2018). Lipid-based techniques used for halal and kosher food authentication. Dalam Preparation and Processing of Religious and Cultural Foods (hlm. 393–407). Elsevier. https://doi.org/10.1016/B978-0-08-101892-7.00021-3
Rolando, J. C., Jue, E., Barlow, J. T., & Ismagilov, R. F. (2020). Real-time kinetics and high-resolution melt curves in single-molecule digital LAMP to differentiate and study specific and non-specific amplification. Nucleic Acids Research, 48(7), e42–e42. https://doi.org/10.1093/nar/gkaa099
Sajali, N., Wong, S. C., Hanapi, U. K., Abu Bakar @ Jamaluddin, S., Tasrip, N. A., & Mohd Desa, M. N. (2018). The Challenges of DNA Extraction in Different Assorted Food Matrices: A Review. Journal of Food Science, 83(10), 2409–2414. https://doi.org/10.1111/1750-3841.14338
Sengupta, P., Wang, C. W., & Ma, Z. F. (2021). Enzyme-Linked Immunosorbent Assay (ELISA) Technique for Food Analysis. Dalam M. S. Khan & M. Shafiur Rahman (Ed.), Techniques to Measure Food Safety and Quality (hlm. 91–115). Springer International Publishing. https://doi.org/10.1007/978-3-030-68636-9_5
Setiaputri, A. A., Barokah, G. R., Sahaba, M. A. B., Arbajayanti, R. D., Fabella, N., Pertiwi, R. M., Nurilmala, M., Nugraha, R., & Abdullah, A. (2020). Perbandingan metode isolasi DNA pada produk perikanan segar dan olahan. Jurnal Pengolahan Hasil Perikanan Indonesia, 23(3), 447–458. https://doi.org/10.34024/jppi.v23i3.1983
Shanker, R., Singh, G., Jyoti, A., Dwivedi, P. D., & Singh, S. P. (2020). Nanotechnology and detection of microbial pathogens. Dalam Animal Biotechnology (hlm. 593–611). Elsevier. https://doi.org/10.1016/B978-0-12-811710-1.00026-4
Suleman, E., Mtshali, M. S., & Lane, E. (2016). Investigation of false positives associated with loop-mediated isothermal amplification assays for detection of Toxoplasma gondii in archived tissue samples of captive felids. Journal of Veterinary Diagnostic Investigation, 28(5), 536–542. https://doi.org/10.1177/1040638716659864
Tao, D., Xiao, X., Lan, X., Xu, B., Wang, Y., Khazalwa, E. M., Pan, W., Ruan, J., Jiang, Y., Liu, X., Li, C., Ye, R., Li, X., Xu, J., Zhao, S., & Xie, S. (2022). An Inexpensive CRISPR-Based Point-of-Care Test for the Identification of Meat Species and Meat Products. Genes, 13(5), 912. https://doi.org/10.3390/genes13050912
Tigrero-Vaca, J., Díaz, B., Gu, G., & Cevallos-Cevallos, J. M. (2025). Next-generation sequencing applications in food science: Fundamentals and recent advances. Frontiers in Bioengineering and Biotechnology, 13, 1638957. https://doi.org/10.3389/fbioe.2025.1638957
Wang, D.-G., Brewster, J., Paul, M., & Tomasula, P. (2015). Two Methods for Increased Specificity and Sensitivity in Loop-Mediated Isothermal Amplification. Molecules, 20(4), 6048–6059. https://doi.org/10.3390/molecules20046048
Wei, Q., Wang, X., Sun, D.-W., & Pu, H. (2019). Rapid detection and control of psychrotrophic microorganisms in cold storage foods: A review. Trends in Food Science & Technology, 86, 453–464. https://doi.org/10.1016/j.tifs.2019.02.009
Wong, Y.-P., Othman, S., Lau, Y.-L., Radu, S., & Chee, H.-Y. (2018). Loop-mediated isothermal amplification (LAMP): A versatile technique for detection of micro-organisms. Journal of Applied Microbiology, 124(3), 626–643. https://doi.org/10.1111/jam.13647
Yamaguchi, D., Yoshida, M., & Nakano, S. (2022). Evaluation of Thermal Stability of DNA Oligonucleotide Structures Embedded in Hydrogels. DNA, 2(4), 302–313. https://doi.org/10.3390/dna2040021
License
Copyright (c) 2025 Linda Wati, Sony Suhandono

This work is licensed under a Creative Commons Attribution 4.0 International License.

Jurnal Biologi Tropis is licensed under a Creative Commons Attribution 4.0 International License.
The copyright of the received article shall be assigned to the author as the owner of the paper. The intended copyright includes the right to publish the article in various forms (including reprints). The journal maintains the publishing rights to the published articles.
Authors are permitted to disseminate published articles by sharing the link/DOI of the article at the journal. Authors are allowed to use their articles for any legal purposes deemed necessary without written permission from the journal with an acknowledgment of initial publication to this journal.
























