Mechanisms of Substance Transport Across the Cell Membrane: Diffusion, Osmosis, and Active Transport
Authors
Azizah Amalia Abbas , Lutfitri Rahmadani , Fransiska Petronela Sepe , Yohanes Mari Ba'i Leta , Veronika P. Sinta Mbia WaeDOI:
10.29303/jbt.v26i1.10979Published:
2026-01-21Issue:
Vol. 26 No. 1 (2026): Januari-MaretKeywords:
Active transport, Cell membrane, Diffusion, OsmosisArticles
Downloads
How to Cite
Downloads
Metrics
Abstract
The cell membrane is a semipermeable structure that regulates substance exchange between intracellular and extracellular environments, maintains cellular homeostasis, and supports metabolic processes, yet the fundamental mechanisms of diffusion, osmosis, and active transport are still frequently misunderstood in both theoretical and educational contexts. This study aims to comprehensively review substance transport mechanisms across the cell membrane and their relevance to biology education and contemporary cellular research. This research employed a narrative literature review, analyzing scientific books and peer-reviewed journal articles published within the last five to ten years, selected from databases such as Google Scholar, PubMed, and MDPI based on topic relevance. The results indicate that diffusion facilitates molecular movement along concentration gradients either directly or through transport proteins; osmosis regulates water balance through semipermeable membranes mediated by aquaporins; and active transport enables the movement of ions and molecules against concentration gradients through ATP-dependent pumps, secondary transporters, ABC transporters, and V-ATPase. These mechanisms are interconnected and influenced by membrane composition, molecular characteristics, and transporter–substrate interactions. This review highlights the importance of an integrative understanding of membrane transport processes to strengthen conceptual learning in biology education and to support advancements in cellular and biomedical research.
References
Asbar, R. F., & Witarsa, R. (2020). Kajian literatur tentang penerapan pembelajaran terpadu di sekolah dasar. Jurnal Review Pendidikan dan Pengajaran, 3(2), 225–234. https://doi.org/10.31004/jrpp.v3i2.1220
Bernardi, A., Bennett, W. F. D., He, S., Jones, D., Kirshner, D., Bennion, B. J., & Carpenter, T. S. (2023). Advances in computational approaches for estimating passive permeability in drug discovery. Membranes, 13(11), 851. https://doi.org/10.3390/membranes13110851
Carbó, R., & Rodríguez, E. (2023). Relevance of sugar transport across the cell membrane. International Journal of Molecular Sciences, 24(7), 6085. https://doi.org/10.3390/ijms24076085
Ciarimboli, G. (2024). Overcoming biological barriers: Importance of membrane transporters in homeostasis, disease, and disease treatment 2.0. International Journal of Molecular Sciences, 25(10), 5521. https://doi.org/10.3390/ijms25105521
Contreras, R. G., Torres-Carrillo, A., Flores-Maldonado, C., Shoshani, L., & Ponce, A. (2024). Na⁺/K⁺-ATPase: More than an electrogenic pump. International Journal of Molecular Sciences, 25(11), 6122. https://doi.org/10.3390/ijms25116122
Devuyst, O. (2024). Aquaporin-1 and osmosis: From physiology to precision in peritoneal dialysis. Journal of the American Society of Nephrology. https://doi.org/10.1681/ASN.0000000000000496
Eaton, A. F., Merkulova, M., & Brown, D. (2021). The H⁺ ATPase (V ATPase): From proton pump to signaling complex in health and disease. https://doi.org/10.1152/ajpcell.00442.2020
Feng, Q., De Chavez, D., Kihlberg, J., & Poongavanam, V. (2025). A membrane permeability database for nonpeptidic macrocycles. Scientific Data. https://doi.org/10.1038/s41597-024-04302-z
Frallicciardi, J., [initials]. (2022). Membrane thickness, lipid phase and sterol type are determining factors for passive diffusion through lipid bilayers. Nature Communications. https://doi.org/10.1038/s41467-022-29272-x
Fuwad, A. et al. (2024). Highly permeable and shelf-stable aquaporin biomimetic membrane based on an anodic aluminum oxide substrate. Npj Clean Water. https://doi.org/10.1038/s41545-024-00301-0
Hong, C. (2024). Membrane permeability: Mechanisms, factors, and applications in biological and industrial systems. https://www.walshmedicalmedia.com/open-access/membrane-permeability-mechanisms-factors-and-applications-in-biological-and-industrial-systems.pdf
How, S. S., et al. (2024). ATP binding cassette (ABC) transporters: Structures and mechanisms. https://doi.org/10.1631/jzus.B2300641
Lestari, A., & Susantini, E. (2020). Pengembangan instrumen tes miskonsepsi materi transpor membran sel. BioEdu, 9(3), 381–388. https://ejournal.unesa.ac.id/index.php/bioedu/article/download/36763/32594
Lestari, D. D. (2025). Peran protein transpor dalam menjaga homeostasis sel. Spizaetus: Jurnal Biologi dan Pendidikan Biologi, 5(1), 1–7. https://dx.doi.org/10.55241/spibio.v6i1.529
Mishra, A. (2024). Mechanisms of active and passive membrane transport in cells. Biochemistry & Physiology, 13(499). https://doi.org/10.4172/2168-9652.1000499
Mohammadifakhr, M., de Grooth, J., Roesink, H. D. W., & Kemperman, A. J. B. (2020). Forward osmosis: A critical review. Processes, 8(4), 404. https://doi.org/10.3390/pr8040404
Möller, M., et al. (2019). Diffusion and transport of reactive species across cell membranes. Springer Protocols. https://doi.org/10.1007/978-3-030-11488-6_1
Qiu, B., et al. (2023). Symport and antiport mechanisms of human glutamate transporters. Nature Communications. https://doi.org/10.1038/s41467-023-38120-5
Ruffinatti, F. A., Scarpellino, G., Chinigò, G., Visentin, L., & Munaron, L. (2023). The emerging concept of transportome: State of the art. Physiology, 38(6), 285–302. https://doi.org/10.1152/physiol.00010.2023
Sauve, S., Williamson, J., Polasa, A., & Moradi, M. (2023). Ins and Outs of Rocker Switch Mechanism in Major Facilitator Superfamily of Transporters. Membranes, 13(5), 462. https://doi.org/10.3390/membranes13050462
Tomkins, M., Hughes, A., & Morris, R. J. (2021). An update on passive transport in and out of plant cells. Plant Physiology, 187(4), 1973–1984. https://doi.org/10.1093/plphys/kiab406
Vrettou, C. S., et al. (2024). Exploring aquaporins in human studies: mechanisms and pathophysiology. Life, 14(12), 1688. https://doi.org/10.3390/life14121688
Yuliani, D. S., Retnoningsih, I., & Irsadi. (2021). Pengaruh perpaduan media statis dan dinamis terhadap pemahaman konsep transpor membran sel. Prosiding Seminar Nasional Biodiversitas (ProsBi). https://jurnal.uns.ac.id/prosbi/article/view/69304
Zhao, C.-R., You, Z.-L., & Bai, L. (2024). Fungal plasma membrane H⁺ ATPase: Structure, mechanism, and drug discovery. Journal of Fungi, 10(4). https://doi.org/10.3390/jof10040273
License
Copyright (c) 2026 Azizah Amalia Abbas, Lutfitri Rahmadani, Fransiska Petronela Sepe, Yohanes Mari Ba'i Leta, Veronika P. Sinta Mbia Wae

This work is licensed under a Creative Commons Attribution 4.0 International License.

Jurnal Biologi Tropis is licensed under a Creative Commons Attribution 4.0 International License.
The copyright of the received article shall be assigned to the author as the owner of the paper. The intended copyright includes the right to publish the article in various forms (including reprints). The journal maintains the publishing rights to the published articles.
Authors are permitted to disseminate published articles by sharing the link/DOI of the article at the journal. Authors are allowed to use their articles for any legal purposes deemed necessary without written permission from the journal with an acknowledgment of initial publication to this journal.
























