Character Improvement of Red Rice (Oryza Sativa L.) Cv. Barak Cenana by Mutagenesis using Gamma Irradiation
Authors
Aloysia Sri Pujiyanti , Bintang Kerta Wijaya , Ida Bagus Made Artadana , Popy Hartatie Hardjo , Maria Goretti Marianti PurwantoDOI:
10.29303/jbt.v21i2.2554Published:
2021-04-26Issue:
Vol. 21 No. 2 (2021): Mei - AgustusKeywords:
Gamma irradiation, induced mutation, Barak Cenana (Oryza sativa L.), RAPD.Articles
Downloads
How to Cite
Downloads
Metrics
Abstract
Red rice cv. Barak Cenana is a local Indonesian rice which is widely planted in Tabanan Regency, Bali. Barak Cenana red rice has potential as a functional food because it contains a lot of nutrients. However, this rice has an unfavorable character, such as long harvest time so that it can only be harvested once a year, and tall stature that causes plants to lodge easily, reducing its productivity. This study aims to determine the effect of gamma rays on growth and development as well as changes in character to obtain mutants plants that have better character. In this research, Barak Cenana seeds were irradiated using gamma rays with irradiation doses of 100 gy, 200 gy, 400 gy, and 800 gy. Furthermore, radiated seeds were planted in the greenhouse and characterized during the vegetative and generative phases including shoot length, harvest time, chlorophyll content, the number of productive tillers, the number of grain contents, the weight of 1,000 seeds, and the polymorphism profile using Random Amplified Polymorphic DNA Analysis (RAPD). The results of this study indicate that all radiation doses produce plants with random characters. Mutations using gamma rays at doses of 100 gy and 400 gy produced plants with better phenotypic characters than wild-type that is shorter plants, shorter harvest times, and more grain content. In addition, the results of the RAPD analysis confirm that there are genetic changes in irradiated rice. This mutants has the potential to reproduce germplasm and to obtain the next generation of mutants that have higher productivity and shorter plant heights.References
Aprida, and Yuwono, S. S. (2017). Phenotype of M2 Generation of Mutant Black Rice (Oryza sativa L). International Journal of Agriculture & Environmental Science, 4(5):1ââ¬â3. doi: 10.14445/23942568/ijaes-v4i5p101.
Barner, J. D., Balaguer, L., Manrique, E., Elvira, S., Davison, A. W. (1992). A reapraisal of the use of DMSO for extraction and determination of chlorophylls a and b in lichens and higher plants. Environtmental and Experimental Botany, 32(2):85-100. DOI: https://doi.org/10.1016/0098-8472(92)900-Y
Bhuiyan, M.S.H., Malek, M., A., Bhuiyan, S., H., Islam, M., Hassan, A. B. A. (2019). Mutation determination of rice by using RAPD primers. Int. J. Agril. Res. Innov. Tech. 9(1): 1-7. DOI: http://dx.doi.org/10.3329/ijarit.v9i1
Dehpour, A. A. Gholampour, M., Rahdary, P., Talubaghi, M. R. J., Hamdi, S. M. M. (2011). Effect of gamma irradiation and salt stress on germination, callus, protein and proline in rice (Oryza sativa L.) Determination of proline content. Iranian Journal of Plant Physiology, 1(4): 251ââ¬â256. Available at: http://www.iau-saveh.ac.ir/Files/Journal/2011-12-25_01.46.54_5 .pdf.
Deshmukh, V. P., Thakare, P. V., Chaudhari, U. S., & Gawande, P. A. (2007). A simple method for isolation of genomic DNA from fresh and dry leaves of Terminalia arjuna (Roxb.) Wight and Argot'. Electronic Journal of Biotechnology, 10(3):468-472. DOI: 10.2225/vol10-issue3-fulltext-5
Gill, S. S., Anjum, N. A., Gill, R., Jha, M., & Tuteja, N. (2015). DNA damage and repair in plants under ultraviolet and ionizing radiations. Scientific World Journal,5ââ¬â7. https://doi.org/10.1155/2015/250158
Gunaratne, A., Wu, K., Li, D., Bentota, A., Corke, H. & Cai, Y. Z. (2013). Antioxidant activity and nutritional quality of traditional red-grained rice varieties containing proanthocyanidins. Food Chem, 138(2ââ¬â3): 1153ââ¬â1161. doi: 10.1016/j.foodchem.2012.11.129.
Hammer, O., Harper, D., Ryan, P. (2001). PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Elctronica, 4:1-9. http://palaeo-electronica.org
Jankowicz-Cieslak, J., Mba, C., & Till, B. J. (2016). Mutagenesis for crop breeding and functional genomics. Biotechnologies for Plant Mutation Breeding: Protocols. https://doi.org/10.1007/978-3-319-45021-6_1
Kadhimi, A. A., Alhasnawi, A. N., Isahak, A., Ashraf, M. F., Mohamad, A., Wan, ;, ââ¬Â¦ Zain, C. M. (2016). Gamma radiosensitivity study on MRQ74 and MR269, two elite varieties of rice (Oryza Sativa L.). Life Science Journal, 13(2). https://doi.org/10.7537/marslsj13021614
Kim, J. H., Ryu, T. H., Lee, S. S., Lee, S., & Chung, B. Y. (2019). Ionizing radiation manifesting DNA damage response in plants: An overview of DNA damage signaling and repair mechanisms in plants. Plant Science, 278(September 2018), 44ââ¬â53. https://doi.org/10.1016/j.plantsci.2018.10.013
Li, S., Zheng, Y. chao, Cui, H. rui, Fu, H. wei, Shu, Q. yao, & Huang, J. zhong. (2016). Frequency and type of inheritable mutations induced by ó rays in rice as revealed by whole genome sequencing. Journal of Zhejiang University: Science B, 17(12):905ââ¬â915. https://doi.org/10.1631/jzus.B1600125
Manova, V., and Gruszka, D. (2015). DNA damage and repair in plants ââ¬â From models to crops. Frontiers in Plant Science, 6: 1-26. https://doi.org/10.3389/fpls.2015.00885
Masood, S. A. et al. (2015). An overview of genetic improvement for drought tolerance in rice (Oryza sativa L.). Life Science, 12(3):63ââ¬â70. http://www.lifesciencesite.com
Masruroh, F., Samanhudi, Sulanjari, Yunus, A. (2016). Improvement of Rice (Oryza sativa L.) var. Ciherang and Cempo Ireng Productivity Using Gamma Irradiation. Journal of Agricultural Sciences and Tehnology B. 289-294. doi: 10.17265/2161-6264/2016.05.001
Meliala, J. H. S., Basuki, N. and Soegianto, A. (2017). Pengaruh iradiasi sinar gama terhadap perubahan fenotipik tanaman padi gogo (Oryza sativa L.). Jurnal Produksi Tanaman, 4(7):585ââ¬â594. http://protan.studentjournal.ub.ac.id
Mohanty, S. (2013). Trends in global rice consumption. Available at: http://irri.org/rice-today/trends-in-global-rice-consumption (Diakses: 15 Juli 2020).
Naeem, M., Ghouri, F., Sahid, M.Q., eat al. (2015). Genetic diversity in mutated and non-mutated rice varieties. Genetics and Molecular Research, 14(4):17109ââ¬â17123. DOI: 10.4238/2015.December.16.11.
Oladosu, Y., Rafii, M. Y., Abdullah, N., Hussin, G., Ramli, A., Rahim, H. A., ââ¬Â¦ Usman, M. (2016). Principle and application of plant mutagenesis in crop improvement: A review. Biotechnology and Biotechnological Equipment, 30(1): 1ââ¬â16. https://doi.org/10.1080/13102818.2015.1087333
Rachmawati, D. et al. (2019). Selection of short stem Mentik Susu rice M3 from gamma ray irradiation. IOP Conference Series: Earth and Environmental Science, 250(1). DOI: 10.1088/1755-1315/250/1/012020.
Rajarajan, D., R.Saraswathi, D. Sassikumar, S.K Ganesh. (2014). Fixation Of Lethal Dose And Effect Of Ethyl Methane Sulfonate Induced Mutagenesis In Rice Adt(R) 47. Life Sciences Leaflets, 57: 65-72. Diakses dari http://lifesciencesleaflets.ning.com/.
Sidler, C., Li, D., Kovalchuk, O., & Kovalchuk, I. (2015). Development-Dependent Expression of DNA Repair Genes and Epigenetic Regulators in Arabidopsis Plants Exposed to Ionizing Radiation. Radiation Research, 183(2): 219. https://doi.org/10.1667/rr13840.1
Silitonga, T.S. (2015). Katalog SDG tanaman pangan tahun 2015. Balai Besar Penelitian dan Pengembangan Bioteknologi dan Sumberdaya Genetik Pertanian, Bogor. (Diakses: 16 Juli 2020)
Tai, T. H. (2007). Induced mutations in rice (Oryza sativa L.). Israel Journal of Plant Sciences, 55(2): 137ââ¬â145. DOI: 10.1560/IJPS.55.2.137.
USDA (2013). Production, Supply, and Distribution (PSD) Online. Available at: https://www.fas.usda.gov/databases/production-supply-and-distribution-online-psd (Diakses: 15 Juli 2020).
Wellburn, A. R. (1994). The Spectral Determination of Chlorophyll a and b, as well as Total Carotenoids, Using Various Solvents with Spectrophotometers of Different Resolution. Journal of Plant Physiology, 144(3):307-313. DOI: https://doi.org/10.1016/S0176-1617(11)81192-2
Widarta, I. W. ., Nocianitri, K. A. & Sari, L. P. I. P. (2013). ââ¬ËEkstraksi Komponen Bioaktif Bekatul Beras Lokal Dengan Beberapa Jenis Pelarutââ¬â¢, Jurnal Aplikasi Tekologi Pangan, 2(2), pp. 75ââ¬â79.
Yuwono, S. S. et al. (2017) ââ¬ËEarly Growth Performance Some Vaierties Of Black Rice (Oryza Sativa L.) Irradiated Using Gammaââ¬â¢, 10(2), pp. 145ââ¬â153.
Zhang, M. W., Zhang, R. F., Zhang, F. X. & Liu, R. H. (2010). ââ¬ËPhenolic profiles and antioxidant activity of black rice bran of different commercially available varietiesââ¬â¢, Journal of Agricultural and Food Chemistry, 58, pp. 7580ââ¬â7587.
Ghazali M., Husna H. & Sukiman. (2018). Diversitas dan Karakteristik Alga Merah (Rhodophyta) pada Akar Mangrove di Teluk Serewe Kabupaten Lombok Timur. Jurnal Biologi Tropis, 18 (1): 80-90. DOI: http://dx.doi.org/10.29303/jbt.v18i1.732
License
Jurnal Biologi Tropis is licensed under a Creative Commons Attribution 4.0 International License.
The copyright of the received article shall be assigned to the author as the owner of the paper. The intended copyright includes the right to publish the article in various forms (including reprints). The journal maintains the publishing rights to the published articles.
Authors are permitted to disseminate published articles by sharing the link/DOI of the article at the journal. Authors are allowed to use their articles for any legal purposes deemed necessary without written permission from the journal with an acknowledgment of initial publication to this journal.