Controlling Culex Quinquefasciatus Say, 1823 (Diptera: Culicidae) Using Several Lysinibacillus Sphaericus Isolates Endogenic to Indonesia

Ika Indayati, Hari Purwanto

Abstract

Mosquito-borne diseases include tropical diseases such as malaria, filariasis, dengue fever, chikungunya, yellow fever and cerebral fever are still major health problems in Indonesia and on a global scale. Various methods have been used to overcome this, including controlling vector mosquitoes using the entomopathogenic microbial Lysinibacillus sphaericus. This study aims to identify bacterial isolates collected based on the 16S rRNA gene and to carry out the pathogenicity test of the bacterial isolates collected on Cx. quinquefasciatus larvae. Bacterial isolates used in this study were collected from root soil, bird droppings and guano. The identification of the type of bacteria was carried out based on the 16S rRNA gene fragment. Based on the results of the 16S RNA sequence analysis of isolates 229C, 6B4, 6.2 and 4D21, it was found that the four isolates were included in the L. sphaericus species with similarity scores ranging from 97% to 100%. The pathogenicity of bacteria was measured based on the mortality of Cx. quinquefasciatus larvae to know whether it has pathogenicity equal to or higher than strain 1593. The pathogenicity test results of 6 isolates 15.4, 229C, 1593, 6B4, 6.2 and 4D21 showed that isolate 15.4 has the highest larval mortality rate, so it is potentially used as a biological agent to control disease vector mosquitoes.

Keywords

Culex quinquefasciatus; Lysinibacillus sphaericus; pathogenicity test; Indonesia

Full Text:

PDF

References

Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., & Pevzner, P. A. (2012). SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. Journal of Computational Biology, 19(5), 455–477. Doi: 10.1089/cmb.2012.0021

Basavaraj S. K., A. Prabhuraj., P. K. Dhakephalkar., S. Hegde & R. S. Giraddi. (2014). Characterization of Lysinibacillus sphaericus C3-41 strain isolated from northern Karnataka, India that is toxic to mosquito larvae. Journal of Biological Control, 28(1):24–30.http://www.informa ticsournals.com/index.php/jbc/article/view/14934

Baumann, L., Broadwell, A. H. & Baumann, P. (1988). Sequence Analysis of the Mosquitocidal Toxin Genes Encoding 514 and 419 Kilodalton Proteins from Bacillus sphaericus 2362 and 2297. J. Bacteriol. 170: 2045–2050. Doi: 10.1128/jb. 170.5.2045-2050.1988

Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114–2120.ttps://doi.org/10.1093/bioinformatics/btu170

Hindley, J. & Berry, C. (1987). Identification, cloning and sequence analysis of the Bacillus sphaericus 1593 41.9 kD larvicidal toxin gene. Mol Microbiol. 1: 187–194. Doi: 10.1111/j.1365-2958.1987.tb00511.x.

Hire, R. S., Hadapad, A. B., Dongre, T. K. & Kumar, V. (2009). Purification and characterization of mosquitocidal Bacillus sphaericus BinA protein. J. Invertebr. Pathol. 101:106–111. doi: 10.1016/j.jip.2009.03.005

Jeong, H., Da-Eun J., Young-Mi S. Seung-Hwan P., & Soo-Keun C. (2013). Genome Sequence of Lysinibacillus sphaericus Strain KCTC 3346T. Genome Announc. 1(4):e00625-13.doi: 10.1128/genomeA.00625-13

Liu, J. W., Porter, A. G., Wee, B. Y. U. & Thanabalu, T. (1996). New gene from nine Bacillus sphaericus strains encoding highly conserved 35.8-kilodalton mosquitocidal toxins. Appl. Environ. Microbiol. 62: 2174–2176.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC167996/

Poopathi S, & Abidha S. (2010). Mosquitocidal bacterial toxins (Bacillus sphaericus and Bacillus thuringiensis serovar israelensis): Mode of action, cytopathological effects and mechanism of resistance. J Physiol Pathophysiol.3:22-38.https://academicjourn als.org/journal/JPAP/article-full-text pdf/ED 79882634

Poopathi S, & Tyagi BK. (2002). Studies on Bacillus sphaericus toxicity related resistance development and biology in the filariasis vector, Culex quinquefasciatus from South India. J Appl Entomol Zool. 37: 365 –371. https://doi.org/10.1303/aez.2002.365

Poopathi S, Mani TR, Rao DR, & Kabilan L. (2002). Evaluation of synergistic interaction between Bacillus sphaericus and a neem based biopesticide on Bsph susceptible Culexquinquefasciatus Say larvae. Insect Sci Appl.22:303–306.https://doi.org/10.1017/ S1742758400020932

Oliveira, U. M. F., Silva-filha, M. H. & Nielsen-leroux, C. (2004). Inheritance and Mechanism of Resistance to Bacillus sphaericus in Culex quinquefasciatus (Diptera : Culicidae) from China and Brazil. J Med Entomol. 41:58-64. doi: 10.1603/0022-2585-41.1.58

Rao, D. R. et al. (1995). Development of a high level of resistance to Bacillus sphaericus in a field population of Culex quinquefasciatus from Kochi, India. J. Am. Mosq. Control Assoc. 11: 1–5. PMID: 7616173

Seemann, T. (2014). Prokka: rapid prokaryotic genome annotation. Bioinformatics. 30(14):2068-2069.doi:10.1093/bioinformatics /btu153

Thanabalu, T., Hindley, J., Jackson-Yap, J. & Berry, C. (1991). Cloning Sequencing and Expression of a Gene Encoding a 100- Kilodalton Mosquitocidal Toxin from Bacillus sphaericus SSII-1. J Bacteriol. 173: 2776–2785. doi: 10.1128/jb.173.9.2776-2785.1991

Thanabalu, T. & Porter, A. G. A. (1996). Bacillus sphaericus gene encoding a novel type of mosquitocidal toxin of 31.8 kDa. Gene. 170: 85–89. doi: 10.1016/0378-1119(95)00836-5

Wirth, M. C., Federici, B. A. & Walton, W. E. (2000). Cyt1A from Bacillus thuringiensis synergizes activity of Bacillus sphaericus against Aedes aegypti (Diptera: Culicidae). Appl Env. Microbiol. 66: 1093–1097. Doi: 10.1128/aem.66.3.1093-1097.2000

Refbacks

  • There are currently no refbacks.