Dilute Alkali Treatment as an Effective Strategy for Valorizing Young Coconut Coir as Cellulose Source
Authors
Margareta Novian Cahyanti , B. K. Wibowo , Y. A. Steefian , D. A. Stefani , D. AnggaranDOI:
10.29303/jbt.v24i2.6891Published:
2024-06-10Issue:
Vol. 24 No. 2 (2024): April - JuniKeywords:
alkali treatment, biomass, waste.Articles
Downloads
How to Cite
Downloads
Metrics
Abstract
Optimal utilization of the abundant young coconut coir has not been achieved, and not even an investigation into its potential as a source of cellulose has been conducted. Carbonized biomass and bioethanol are examples of energy carriers that can be produced from the cellulose found in young coconut coir. Additionally, cellulose can be utilized in the process of creating advanced materials like cellulose nanofibers and nanocrystals. In order to obtain cellulose from biomass, a treatment is required. The purpose of this study is to investigate how dilute alkali treatment affects the composition of young coconut coirs. Sodium hydroxide solutions at 1.5 and 3% concentrations were used in the alkaline treatment, which was carried out for one hour at room temperature and then for two hours at 100°C. The biomass-to-sodium hydroxide solution ratio was 1:24. The percentage of yield that is achieved following treatment with diluted alkali varies between 29.70 and 30.28%. Following treatment with 3% sodium hydroxide, the concentration of water-soluble compounds dropped from 45% to 3%. Following sodium hydroxide treatment, there was a decrease in the amounts of hemicellulose and lignin. Following a 3% alkali treatment, the cellulose content increased significantly from 19% to 66%. The significant increase in cellulose content after alkali treatment can be used to choose a treatment for young coconut coir during valorization.
References
Awoyale, A. A., & Lokhat, D. (2021). Experimental determination of the effects of pretreatment on selected Nigerian lignocellulosic biomass in bioethanol production. Scientific Reports, 11(1), 1–16. https://doi.org/10.1038/s41598-020-78105-8
Barman, D. N., Haque, M. A., Hossain, M. M., Paul, S. K., & Yun, H. D. (2020). Deconstruction of Pine Wood (Pinus sylvestris) Recalcitrant Structure Using Alkali Treatment for Enhancing Enzymatic Saccharification Evaluated by Congo Red. Waste and Biomass Valorization, 11(5), 1755–1764. https://doi.org/10.1007/s12649-018-00547-z
Budianto, A., Kusdarini, E., Mangkurat, W., Nurdiana, E., & Asri, N. P. (2021). Activated Carbon Producing from Young Coconut Coir and Shells to Meet Activated Carbon Needs in Water Purification Process. Journal of Physics: Conference Series, 2117(1). https://doi.org/10.1088/1742-6596/2117/1/012040
Cahyanti, M. N., Shanmugam, S., & Kikas, T. (2023). Synergistic Effects of Torrefaction and Alkaline Pretreatment on Sugar and Bioethanol Production from Wood Waste. Energies, 16(22). https://doi.org/10.3390/en16227606
Fajriutami, T., Fatriasari, W., Euis, D., Pusat, H., & Biomaterial, P. (2016). Pengaruh Pra Perlakuan Basa Pada Ampas Tebu Terhadap Karakterisasi Pulp Dan Produksi Gula Pereduksi. Jurnal Riset Industri, 10(3), 147–161.
Gao, F., Yang, F., De, Y., Tao, Y., Ta, N., & Wang, H. (2020). Dilute Alkali Pretreatment and Subsequent Enzymatic Hydrolysis of Amur Silvergrass for Ethanol Production. BioResources, 15(3), 4823–4834. https://doi.org/http://dx.doi.org/10.15376/biores.15.3.4823-4834
Haq, I. U., Qaisar, K., Nawaz, A., Akram, F., Mukhtar, H., Zohu, X., Xu, Y., Mumtaz, M. W., Rashid, U., Ghani, W. A. W. A. K., & Choong, T. S. Y. (2021). Advances in valorization of lignocellulosic biomass towards energy generation. Catalysts, 11(3), 1–26. https://doi.org/10.3390/catal11030309
Haque, M. A., Barman, D. N., Kang, T. H., Kim, M. K., Kim, J., Kim, H., & Yun, H. D. (2012). Effect of dilute alkali on structural features and enzymatic hydrolysis of barley straw (Hordeum vulgare) at boiling temperature with low residence time. In Journal of Microbiology and Biotechnology (Vol. 22, Issue 12, pp. 1681–1691). https://doi.org/10.4014/jmb.1206.06058
Kataria, R., Ruhal, R., Babu, R., & Ghosh, S. (2013). Saccharification of alkali treated biomass of Kans grass contributes higher sugar in contrast to acid treated biomass. Chemical Engineering Journal, 230, 36–47. https://doi.org/10.1016/j.cej.2013.06.045
Kathirselvam, M., Kumaravel, A., Arthanarieswaran, V. P., & Saravanakumar, S. S. (2019). Characterization of cellulose fibers in Thespesia populnea barks: Influence of alkali treatment. Carbohydrate Polymers, 217(February), 178–189. https://doi.org/10.1016/j.carbpol.2019.04.063
Keshav, P. K., Banoth, C., Kethavath, S. N., & Bhukya, B. (2023). Lignocellulosic ethanol production from cotton stalk: an overview on pretreatment, saccharification and fermentation methods for improved bioconversion process. Biomass Conversion and Biorefinery, 13(6), 4477–4493. https://doi.org/10.1007/s13399-021-01468-z
Klunklin, W., Hinmo, S., Thipchai, P., & Rachtanapun, P. (2023). Effect of Bleaching Processes on Physicochemical and Functional Properties of Cellulose and Carboxymethyl Cellulose from Young and Mature Coconut Coir. Polymers, 15(16). https://doi.org/10.3390/polym15163376
Li, J., Liu, Z., Feng, C., Liu, X., Qin, F., Liang, C., Bian, H., Qin, C., & Yao, S. (2021). Green, efficient extraction of bamboo hemicellulose using freeze-thaw assisted alkali treatment. Bioresource Technology, 333. https://doi.org/10.1016/j.biortech.2021.125107
Li, Q., Gao, Y., Wang, H., Li, B., Liu, C., Yu, G., & Mu, X. (2012). Comparison of different alkali-based pretreatments of corn stover for improving enzymatic saccharification. Bioresource Technology, 125, 193–199. https://doi.org/10.1016/j.biortech.2012.08.095
Lu, Y., He, Q., Fan, G., Cheng, Q., & Song, G. (2021). Extraction and modification of hemicellulose from lignocellulosic biomass: A review. In Green Processing and Synthesis (Vol. 10, Issue 1, pp. 779–804). De Gruyter Open Ltd. https://doi.org/10.1515/gps-2021-0065
Lubis, K., Hermanto, E. (2020). Pembuatan Genteng Beton Serat Dengan Bahan Tambah Serat Serabut Kelapa Dan Styrofoam. Cetak) Buletin Utama Teknik, 15(2), 1410–4520.
Mediaperkebunan. (2022). Program Pengembangan Kelapa Tahun 2022 12.570 Ha. In Http://Mediaperkebunan.Id/.
Mustikaningrum, M., Cahyono, R. B., & Yuliansyah, A. T. (2021). Effect of NaOH Concentration in Alkaline Treatment Process for Producing Nano Crystal Cellulose-Based Biosorbent for Methylene Blue. IOP Conference Series: Materials Science and Engineering, 1053(1), 012005. https://doi.org/10.1088/1757-899x/1053/1/012005
Novianto, N., Effendy, I., & Aminurohman, A. (2020). Respon Pertumbuhan dan Hasil Tanaman Sawi (Brassica junceea L.) Terhadap Pupuk Organik Cair Hasil Fermentasi Sabut Kelapa. Agroteknika, 3(1), 35–41. https://doi.org/10.32530/agroteknika.v3i1.67
Nurhasni, N., Larasati, T. R. D., & Iksan, A. (2016). Delignification of Sawdust White Teak (Gmelina arborea Roxb.) by Fungi Phanerochaete chrysosporium Irradiated Gamma Ray. Jurnal Kimia VALENSI, 0(0). https://doi.org/10.15408/jkv.v0i0.3079
Pinto, E., Aggrey, W. N., Boakye, P., Amenuvor, G., Sokama-Neuyam, Y. A., Fokuo, M. K., Karimaie, H., Sarkodie, K., Adenutsi, C. D., Erzuah, S., & Rockson, M. A. D. (2022). Cellulose processing from biomass and its derivatization into carboxymethylcellulose: A review. Scientific African, 15, e01078. https://doi.org/10.1016/j.sciaf.2021.e01078
Prasertcharoensuk, P., Bull, S. J., & Phan, A. N. (2019). Gasification of waste biomass for hydrogen production: Effects of pyrolysis parameters. Renewable Energy, 143, 112–120. https://doi.org/10.1016/j.renene.2019.05.009
Putri Ayu, D., Rahmadhani Putri, E., Rohmanniatul Izza, P., & Nurkhamamah, Z. (2021). Pengolahan Limbah Serabut Kelapa Menjadi Media Tanam. Jurnal Praksis Dan Dedikasi (JPDS), 4(2), 93–100. http://dx.doi.org/10.17977/um032v4i2p93-100
Rogoski, W., Pereira, G., Cesca, K., Oliveira, D., & De Andrade, C. J. (2023). An Overview on Pretreatments for the Production of Cassava Peels-based Xyloligosaccharides: State of Art and Challenges. Waste and Biomass Valorization, 14, 3. https://doi.org/10.1007/s12649-023-02044-4
Sarumaha, G. E., & Muchtar, Z. (2022). Synthesis and Characterization of α-Cellulose from Young Coconut Coir (Cocos nucifera L.). Indonesian Journal of Chemical Science and Technology (IJCST), 5(1), 28. https://doi.org/10.24114/ijcst.v5i1.33143
Shankaran, D. R. (2018). Chapter 14 - Cellulose Nanocrystals for Health Care Applications. In S. Mohan Bhagyaraj, O. S. Oluwafemi, N. Kalarikkal, & S. B. T.-A. of N. Thomas (Eds.), Micro and Nano Technologies (pp. 415–459). Woodhead Publishing. https://doi.org/https://doi.org/10.1016/B978-0-08-101971-9.00015-6
Sokanandi, A., Pari, G., Setiawan, D., & Litbang Keteknikan Kehutanan dan Pengolahan Hasil Hutan Jl Gunung Batu, P. (2014). 32(3), 209–220. http://dx.doi.org/10.20886/jphh.2014.32.3.209-220
Song, K., Zhu, X., Zhu, W., & Li, X. (2019). Preparation and characterization of cellulose nanocrystal extracted from Calotropis procera biomass. Bioresources and Bioprocessing, 6(1). https://doi.org/10.1186/s40643-019-0279-z
Subiyanto. (2000). Prospek Industri Pengolahan Limbah Sabut Kelapa. Jurnal Teknologi Lingkungan, 1(1), 1–9.
Syafii, W., & Syamsu, K. (2012, December 6). Produktivitas Bioetanol dari Kayu Sengon (Paraserianthes falcataria) dengan Perlakuan Enzimatis. Seminar Nasional Masyarakat Peneliti Kayu Indonesia XV. Makasar.
Vardhini, K. J. V, Murugan, R., & Rathinamoorthy, & R. (2019). Effect of alkali treatment on physical properties of banana fibre. In Indian Journal of Fibre & Textile Research (Vol. 44). http://op.niscpr.res.in/index.php/IJFTR/article/view/20584
Yaşar, S., & İçel, B. (2016). Alkali Modification of Cotton (Gossypium hirsutum L.) Stalks and its Effect on Properties of Produced Particleboards. Bioresources, 11(3), 7191–7204. http://dx.doi.org/10.15376/biores.11.3.7191-7204
License
Copyright (c) 2024 Margareta Novian Cahyanti, B. K. Wibowo, Y. A. Steefian, D. A. Stefani, D. Anggaran
This work is licensed under a Creative Commons Attribution 4.0 International License.
Jurnal Biologi Tropis is licensed under a Creative Commons Attribution 4.0 International License.
The copyright of the received article shall be assigned to the author as the owner of the paper. The intended copyright includes the right to publish the article in various forms (including reprints). The journal maintains the publishing rights to the published articles.
Authors are permitted to disseminate published articles by sharing the link/DOI of the article at the journal. Authors are allowed to use their articles for any legal purposes deemed necessary without written permission from the journal with an acknowledgment of initial publication to this journal.