Distribution of Soil Macrofauna Diversity and Abudance Land Used at Moving Agricultura Systems Warmare District, Regency of Manokwari, Province of West Papua
Authors
Amin Mbusango , Kati Syamsudin Kadang Tola , Samsul Bachri , Ratna NingsiDOI:
10.29303/jbt.v24i2.6892Published:
2024-05-31Issue:
Vol. 24 No. 2 (2024): April - JuniKeywords:
Abudance, diversity, land use, macrofauna, shifthing cultivationArticles
Downloads
How to Cite
Downloads
Metrics
Abstract
Warmare District, Manokwari Regency, West Papua Province is one of the areas where the people still maintain the shifting cultivation system and it has even become one of the local wisdoms in the area. This research aims to examine the diversity and density of soil macrofauna on shifting cultivation land in the Warmare District, Manokwari Regency. The method used in this research is the direct handsorting method in the field and macrofauna identification using a binocular microscope. Data analysis used in this research was cluster analysis with PAST (Powerful Software for Scientific Data Analysis) software version 3.4 and used the Landmarks 3D PCA test to see the relationship between soil macrofauna diversity and land use types. The research results showed that the highest density and diversity of soil macrofauna was shown by the use of forest land with 38 taxa at a depth of 0-10 cm and 37 taxa at a depth of 10-20 cm. Where the high diversity composition of the Shannon-Weaner index is shown by forest land use with a value of 0.94 and is reinforced by the low Simpson index value of 0.30 for forest land use. This is in line with the results of the PCA analysis which shows that macrofauna forest land is compared with monoculture cultivation land and polyculture cultivation land.
References
Al-Maliki, S., Al-Taey, D. K. A., & Al-Mammori, H. Z. (2021). Earthworms and eco-consequences: Considerations to soil biological indicators and plant function: A review. Acta Ecologica Sinica, 41(6), 512–523. https://doi.org/10.1016/j.chnaes.2021.02.003
Anderson, J. M., & Ingram, J. S. I. (1990). Tropical Soil Biology and Fertility: A Handbook of Methods. The Journal of Ecology, 78(2), 547. https://doi.org/10.2307/2261129
Caló, L. O., Winckler Caldeira, M. V., Figueira da Silva, C., Camara, R., Castro, K. C., Santana de Lima, S., Pereira, M. G., & Maria de Aquino, A. (2022). Epigeal fauna and edaphic properties as possible soil quality indicators in forest restoration areas in Espírito Santo, Brazil. Acta Oecologica, 117, 103870. https://doi.org/10.1016/j.actao.2022.103870
Chomel, M., Baggs, E. M., Lavallee, J. M., Caruso, T., Alvarez, N., Francisco, S., Vries, F. T. De, Rhymes, J. M., Emmerson, M. C., Bardgett, R. D., & Johnson, D. (2019). Drought decreases incorporation of recent plant photosynthate into soil food webs regardless of their trophic complexity. Global Change Biology, 25, 3549–3561. https://doi.org/10.1111/gcb.14754
Coleman, D. C. , D. A. Crossley, Jr. , & Paul F. Hendrix. (2004). Second Edition Fundamentals of Soil Ecology.
Daggers, T. D., van Oevelen, D., Herman, P. M. J., Boschker, H. T. S., & van der Wal, D. (2020). Spatial variability in macrofaunal diet composition and grazing pressure on microphytobenthos in intertidal areas. Limnology and Oceanography, 65(11), 2819–2834. https://doi.org/10.1002/lno.11554
Dahlsjö, C. A. L., Stiblik, P., Jaklová, J., Zídek, M., Wicman, J., Bohdan, H., & Jakub, L. (2019). The local impact of macrofauna and land ‐ use intensity on soil nutrient concentration and exchangeability in lowland tropical Peru. Wiley Biotropica, 00, 1–10. https://doi.org/10.1111/btp.12676
Dahlström, A. (2008). Biodiversity and Traditional Land Use in South-Central Sweden: The Significance of Management Timing. Environment and History, 14(385–403). https://doi.org/10.3197/096734008X333572
Delgado-Matasa, C., & Pukkala, T. (2014). Optimisation of the traditional land-use system in the Angolan highlands using linear programming. International Journal of Sustainable Development & World Ecology, 21(2), 138–148. https://doi.org/10.1080/13504509.2013.863238
Dubey, R. K., Dubey, P. K., Chaurasia, R., Singh, H. B., & Abhilash, P. C. (2020). Sustainable agronomic practices for enhancing the soil quality and yield of Cicer arietinum L . under diverse agroecosystems. Journal of Environmental Management, 262(110284), 1–12. https://doi.org/10.1016/j.jenvman.2020.110284
Endrik Nurrohman, Abdulkadir Rahardjanto, S. W. (2018). Studi Hubungan Keanekaragaman Makrofauna Tanah Dengan Kandungan C-Organik Dan Organophosfat Tanah di Perkebunan Cokelat (Theobroma Cacao L.) Kalibaru Banyuwangi. Bioeksperimen: Jurnal Penelitian Biologi, 4(1), 1.
Groenigen, J. W. van, Lubbers, I. M., Vos, H. M. J., Brown, G. G., Deyn, G. B. De, & Groenigen, K. J. van. (2014). Earthworms increase plant production: a meta-analysis. Scientific Reports, 4(6365), 1–7. https://doi.org/10.1038/srep06365
Jiang, Y., Ma, N., Chen, Z., & Xie, H. (2018). Soil macrofauna assemblage composition and functional groups in no-tillage with corn stover mulch agroecosystems in a mollisol area of northeastern China. Applied Soil Ecology, 128, 61–70. https://doi.org/10.1016/j.apsoil.2018.04.006
Kc, B., & Race, D. (2020). Outmigration and Land-Use Change : A Case Study. Land, 9(2), 1–19.
Kihara, J., Bolo, P., Kinyua, M., Nyawira, S. S., & Sommer, R. (2020). Soil health and ecosystem services : Lessons from sub-Sahara Africa ( SSA ). Geoderma, 370, 114342. https://doi.org/10.1016/j.geoderma.2020.114342
Kilowasid, L. M. H., Sanjaya, M. F., Rakian, T. C., Alam, S., Djafar, M. K., & Muliddin. (2020). Vermireactor Shape. Unila, 25(2), 1–10. https://doi.org/10.5400/jts.2019.v25i2.1
Koncz, N. K., Béri, B., Deák, B., Kelemen, A., Tóth, K., Kiss, R., Radócz, S., Miglécz, T., Tóthmérész, B., & Orsolya. (2020). Meat production and maintaining biodiversity : Grazing by traditional breeds and crossbred beef cattle in marshes and grasslands. Applied Vegetation Science, 23, 139–148. https://doi.org/10.1111/avsc.12475
Kudureti, A., Zhao, S., Zhakyp, D., & Tian, C. (2023). Responses of soil fauna community under changing environmental conditions. Journal of Arid Land, 15(5), 620–636. https://doi.org/10.1007/s40333-023-0009-4
Lavelle, P., & Spain, A. v. (2003). Soil Ecology (secon edit). Kluwer Academic Publishers.
Lubbers, I. M., Berg, M. P., Deyn, G. B. De, Putten, W. H. Van Der, & Groenigen, J. W. Van. (2020). Soil fauna diversity increases CO2 but suppresses N2O emissions from soil. Global Change Biology, 26, 1886–1898. https://doi.org/10.1111/gcb.14860
Melman, D. A., Kelly, C., Schneekloth, J., Calderón, F., & Fonte, S. J. (2019). Tillage and residue management drive rapid changes in soil macrofauna communities and soil properties in a semiarid cropping system of Eastern Colorado. Applied Soil Ecology, 143, 98–106. https://doi.org/10.1016/j.apsoil.2019.05.022
Menta, C., & Remelli, S. (2020). Soil Health and Arthropods : From Complex System to Worthwhile Investigation. Insect, 11(54), 1–21.
Mwamboa, F. M., Fürstb, C., Nyarkoc, B. K., Borgemeistera, C., & Martius, C. (2020). Land Use Policy Maize production and environmental costs : Resource evaluation and strategic land use planning for food security in northern Ghana by means of coupled emergy and data envelopment analysis. Land Use Policy, 95(104490), 1–30. https://doi.org/10.1016/j.landusepol.2020.104490
Namriah, & Kilowasid, L. M. H. (2015). Local Soil Fertility Management on Small-Scale Farming Systems for Sustainable Agriculture. Rightslink, 110009, 1–5. https://doi.org/10.1063/1.4930780
Nielsen, U. N., & Ball, B. A. (2015). Impacts of altered precipitation regimes on soil communities and biogeochemistry in arid and semi-arid ecosystems. Global Change Biology, 21, 1407–1421. https://doi.org/10.1111/gcb.12789
Nunes, M. R., Karlen, D. L., Veum, K. S., Moorman, T. B., & Cambardella, C. A. (2020). Biological soil health indicators respond to tillage intensity : A US meta- analysis. Geoderma, 369, 1–12. https://doi.org/10.1016/j.geoderma.2020.114335
Nurrohman, E., Rahardjanto, A., Wahyuni, S., & Nurrohman, E. (2015). Keanekaragaman Makrofauna Tanah Di Kawasan Perkebunan Coklat (Theobroma Cacao L. ) Sebagai Bioindikator Kesuburan Tanah Dan Sumber Belajar Biologi. Pendidikan Biologi Indonesia, 1(2), 197–208.
Ren, W., Banger, K., Tao, B., Yang, J., Huang, Y., & Tian, H. (2020). Global pattern and change of cropland soil organic carbon during 1901-2010 : Roles of climate , atmospheric chemistry , land use and management. Geography and Sustainability Journal, 1, 59–69. https://doi.org/10.1016/j.geosus.2020.03.001
Smith, P., House, J. I., Bustamante, M., Sobocka, J., Harper, R., Pan, G., West, P. C., Clark, J. M., Adhya, T., Rumpel, C., Paustian, K., Kuikman, P., Cotrufo, M. F., Elliott, J. A., Mcdowell, R. I. C., Griffiths, R. I., Asakawa, S., Bondeau, A., In, Atulk. J., Pugh2, T. A. M. (2016). Global change pressures on soils from land use and management. Global Change Biology, 22, 1008–1028. https://doi.org/10.1111/gcb.13068
Sofo, A., Mininni, A. N., & Ricciuti, P. (2020). Soil Macrofauna : A key Factor for Increasing Soil Fertility and Promoting Sustainable Soil Use in Fruit. Agronomi, 10(456), 1–20. https://doi.org/10.3390/agronomy10040456
Taghizadeh-Mehrjardi, R., Nabiollahi, K., Rasoli, L., Kerry, R., & Scholten, T. (2020). Land Suitability Assessment and Agricultural Production Sustainability Using Machine Learning Models. Agronomy, 10(573), 1–20.
Tanjung, D. R., Alfian, A., Winarno, J., Retno, R., & Sumani, S. (2020). Relation of macrofauna diversity and chemical soil properties in rice field ecosystem , Dukuhseti district , Pati regency , Indonesia. African Journal of Agricultural Research, 15(2), 240–247. https://doi.org/10.5897/AJAR2019.14219
Vasconcelos, W. L. F. de, Rodrigues, D. de M., Silva, R. O. C., & Alfaia, S. S. (2020). Diversity and abundance of soil macrofauna in three land use systems in eastern Amazonia. Revista Brasileira de Ciência Do Solo, 44. https://doi.org/10.36783/18069657rbcs20190136
License
Copyright (c) 2024 Amin Mbusango, Kati Syamsudin Kadang Tola, Samsul Bachri, Ratna Ningsi
This work is licensed under a Creative Commons Attribution 4.0 International License.
Jurnal Biologi Tropis is licensed under a Creative Commons Attribution 4.0 International License.
The copyright of the received article shall be assigned to the author as the owner of the paper. The intended copyright includes the right to publish the article in various forms (including reprints). The journal maintains the publishing rights to the published articles.
Authors are permitted to disseminate published articles by sharing the link/DOI of the article at the journal. Authors are allowed to use their articles for any legal purposes deemed necessary without written permission from the journal with an acknowledgment of initial publication to this journal.