Literature Review on the Therapeutic Potential of Bacteriophages Against Resistant Staphylococcus aureus
Authors
Ivan Armadi Hasugian , Hikmah ZikriyaniDOI:
10.29303/jbt.v25i4.9938Published:
2025-10-01Issue:
Vol. 25 No. 4 (2025): Oktober-DesemberKeywords:
Antimicrobial resistance, bacteriophage, MRSA, O-acetyltransferase A (OatA), Staphylococcus aureus.Articles
Downloads
How to Cite
Downloads
Metrics
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) remains a major driver of antimicrobial resistance and necessitates precise non-antibiotic therapeutics. This review comprehensively evaluates evidence on bacteriophage therapy against resistant S. aureus and the molecular and structural barriers that limit efficacy. A structured search of PubMed, Scopus, Google Scholar, ScienceDirect, KAKEN, and ResearchGate identified peer-reviewed studies published up to 2025 using predefined keywords. Articles were screened and synthesized thematically across vitro assays, Ex Vivo burn-wound models, and host-range/biofilm studies, with mechanistic mapping of mecA/PBP2a and O-acetyltransferase A (OatA), and appraisal of dosing strategies (single, repeated, prophylactic). Findings show consistent phage-mediated reductions of S. aureus in vitro; in Ex Vivo human/porcine skin, higher doses and repeated application enhanced suppression, and prophylaxis prevented colonization. Activity against biofilm was strain- and phage-specific; some phages reduced biomass while others paradoxically increased it, and narrow host range plus OatA-linked barriers persisted. In conclusion, bacteriophages are promising but require precise strain matching and micro-environmental consideration. The research highlights the importance of biofilm-aware screening, strategic formulation of phage cocktails or lytic enzymes, optimized dosing regimens for repeated or prophylactic use, and the integration of molecular characterization with synthetic phage engineering to broaden host range and accelerate translation into clinical applications.
References
Abdelrahman, F., Easwaran, M., Daramola, O. I., Ragab, S., Lynch, S., Oduselu, T. J., Khan, F. M., Ayobami, A., Adnan, F., Torrents, E., Sanmukh, S., & El-Shibiny, A. (2021). Phage-encoded endolysins. Antibiotics, 10 (2): 1–31. DOI: https://dx.doi.org/10.3390/antibiotics10020124
Abdraimova, N. K., Shitikov, E. A., Malakhova, M. V., Gorodnichev, R. B., & Kornienko, M. A. (2024). Effects Of Lytic Bacteriophages Of The Families Herelleviridae And Rountreeviridae On The Staphylococcus aureus Biofilms. Bulletin of Russian State Medical University, 6: 98–104. DOI: https://dx.doi.org/10.24075/brsmu.2024.061
Abedon, S. T., Danis-Wlodarczyk, K. M., & Wozniak, D. J. (2021). Phage cocktail development for bacteriophage therapy: Toward improving spectrum of activity breadth and depth. Pharmaceuticals, 14 (10). DOI: https://dx.doi.org/10.3390/ph14101019
Alifiyah, N. I., Aryanto, A., & Zikriyani, H. (2025). Phytochemical Constituents, Nutritional Composition, and Pharmacological Potentials of Mangifera foetida: A Comprehensive Review. Jurnal Biologi Tropis, 25 (3): 2488–2499. DOI: https://dx.doi.org/10.29303/jbt.v25i3.9167
Ando, H. (2020). Creation of next-generation phage biologics without phage isolation. URL: https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-20H03723 (Accessed on August 12, 2025)
Ando, H. (2022). Creation of synthetic bacteriophages - Treatment of drug-resistant bacterial infections and human microbiota editing. Journal of Synthetic Biology 73: 201. DOI: https://dx.doi.org/10.3412/jsb.73.201
Ando, H., Lemire, S., Pires, D. P., & Lu, T. K. (2015). Engineering Modular Viral Scaffolds for Targeted Bacterial Population Editing. Cell Systems, 1 (3): 187–196. DOI: https://dx.doi.org/10.1016/j.cels.2015.08.013
Anyaegbunam, N. J., Anekpo, C. C., Anyaegbunam, Z. K. G., Doowuese, Y., Chinaka, C. B., Odo, O. J., Sharndama, H. C., Okeke, O. P., & Mba, I. E. (2022). The resurgence of phage-based therapy in the era of increasing antibiotic resistance: From research progress to challenges and prospects. Microbiological Research, 264: 127155. DOI: https://dx.doi.org/10.1016/j.micres.2022.127155
Arulkumaran, N., Routledge, M., Schlebusch, S., Lipman, J., & Conway Morris, A. (2020). Antimicrobial-associated harm in critical care: a narrative review. Intensive Care Medicine, 46 (2): 225–235. DOI: https://dx.doi.org/10.1007/s00134-020-05929-3
Azeredo, J., Azevedo, N. F., Briandet, R., Cerca, N., Coenye, T., Costa, A. R., Desvaux, M., Di Bonaventura, G., Hébraud, M., Jaglic, Z., Kačániová, M., Knøchel, S., Lourenço, A., Mergulhão, F., Meyer, R. L., Nychas, G., Simões, M., Tresse, O., & Sternberg, C. (2017). Critical review on biofilm methods. Critical Reviews in Microbiology, 43 (3): 313–351. DOI: https://dx.doi.org/10.1080/1040841X.2016.1208146
Bernard, E., Rolain, T., Courtin, P., Guillot, A., Langella, P., Hols, P., & Chapot-Chartier, M. P. (2011). Characterization of O-acetylation of N-acetylglucosamine: A novel structural variation of bacterial peptidoglycan. Journal of Biological Chemistry, 286 (27): 23950–23958. DOI: https://dx.doi.org/10.1074/jbc.M111.241414
Brives, C., & Pourraz, J. (2020). Phage therapy as a potential solution in the fight against AMR: obstacles and possible futures. Palgrave Communications, 6 (1). DOI: https://dx.doi.org/10.1057/s41599-020-0478-4
Brüser, T., & Mehner-Breitfeld, D. (2022). Occurrence and potential mechanism of holin-mediated non-lytic protein translocation in bacteria. Microbial Cell, 9 (10): 159–173. DOI: https://dx.doi.org/10.15698/mic2022.10.785
Chandra, M. A., Afra, F. Y., & Rahmiati, N. (2024). Daya Hambat Formula Optimum Sabun Cair Daun Bandotan (Ageratum conyzoides) terhadap Staphylococcus aureusdan Pseudomonas aeruginosa. Bioscientist: Jurnal Ilmiah Biologi, 12 (2): 1843. DOI: https://dx.doi.org/10.33394/bioscientist.v12i2.12914
Duarte, A. C., Fernández, L., De Maesschalck, V., Gutiérrez, D., Campelo, A. B., Briers, Y., Lavigne, R., Rodríguez, A., & García, P. (2021). Synergistic action of phage phiIPLA-RODI and lytic protein CHAPSH3b: a combination strategy to target Staphylococcus aureusbiofilms. npj Biofilms and Microbiomes, 7 (1). DOI: https://dx.doi.org/10.1038/s41522-021-00208-5
Fair, R. J., & Tor, Y. (2014). Antibiotics and bacterial resistance in the 21st century. Perspectives in Medicinal Chemistry, 6: 25–64. DOI: https://dx.doi.org/10.4137/PMC.S14459
Górski, A., Międzybrodzki, R., Łobocka, M., Głowacka-Rutkowska, A., Bednarek, A., Borysowski, J., Jończyk-Matysiak, E., Łusiak-Szelachowska, M., Weber-Dabrowska, B., Bagińska, N., Letkiewicz, S., Dabrowska, K., & Scheres, J. (2018). Phage therapy: What have we learned? Viruses, 10 (6). DOI: https://dx.doi.org/10.3390/v10060288
Habboush, Y., & Guzman, N. (2023). Antibiotic Resistance. StatPearls. URL: https://www.ncbi.nlm.nih.gov/books/NBK513277/ (Accessed on August 12, 2025)
Irianto, K. (2014). Bakteriologi, Mikologi & Virologi: Panduan Medis & Klinis. 1st Ed. Penerbit Alfabeta. [ISBN/pp jika tersedia]
Jones, C. S., Sychantha, D., Lynne Howell, P., & Clarke, A. J. (2020). Structural basis for the O-acetyltransferase function of the extracytoplasmic domain of OatA from Staphylococcus aureus. Journal of Biological Chemistry, 295 (24): 8204–8213. DOI: https://dx.doi.org/10.1074/JBC.RA120.013108
Lee Ventola, C. (2015). The Antibiotic Resistance Crisis Part 1: Causes and Threats. P&T 40 (4). URL: https://pubmed.ncbi.nlm.nih.gov/25859123/ (Accessed on August 12, 2025)
Liu, K., Wang, C., Zhou, X., Guo, X., Yang, Y., Liu, W., Zhao, R., & Song, H. (2024). Bacteriophage therapy for drug-resistant Staphylococcus aureusinfections. Frontiers in Cellular and Infection Microbiology, 14. DOI: https://dx.doi.org/10.3389/fcimb.2024.1336821
Mitsunaka, S., Yamazaki, K., Pramono, A. K., Ikeuchi, M., Kitao, T., Ohara, N., Kubori, T., Nagai, H., & Ando, H. (2022). Synthetic engineering and biological containment of bacteriophages. Proceedings of the National Academy of Sciences of the United States of America, 119 (48). DOI: https://dx.doi.org/10.1073/pnas.2206739119
Molendijk, M. M., Boekema, B. K. H. L., Lattwein, K. R., Vlig, M., Bode, L. G. M., Koopmans, M. P. G., Verbon, A., de Graaf, M., & van Wamel, W. J. B. (2024). Bacteriophage therapy reduces Staphylococcus aureusin a porcine and human Ex Vivo burn wound infection model. Antimicrobial Agents and Chemotherapy, 68 (9). DOI: https://dx.doi.org/10.1128/aac.00650-24
Murray, C. J., Ikuta, K. S., Sharara, F., Swetschinski, L., Robles Aguilar, G., Gray, A., Han, C., Bisignano, C., Rao, P., Wool, E., Johnson, S. C., Browne, A. J., Chipeta, M. G., Fell, F., Hackett, S., Haines-Woodhouse, G., Kashef Hamadani, B. H., Kumaran, E. A. P., McManigal, B., … Naghavi, M. (2022). Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet, 399 (10325): 629–655. DOI: https://dx.doi.org/10.1016/S0140-6736(21)02724-0
Mutmainnah, B., Baktir, A., & Ni’matuzahroh. (2020). Characteristics of methicillin-resistant Staphylococcus aureus(MRSA) and methicillin-sensitive Staphylococcus aureus(MSSA) and their inhibitory response by ethanol extract of Abrus precatorius. Biodiversitas, 21 (9): 4076–4085. DOI: https://dx.doi.org/10.13057/biodiv/d210919
Nova, T., Purwoko, B., & Mubarok, F. H. (2024). Hubungan Lama Terapi Dengan Efek Samping Pengobatan TB-MDR. Jurnal Farmasetis, 13. URL: https://journal2.stikeskendal.ac.id/index.php/far/article/download/2467/1416/10184 (Accessed on August 12, 2025)
Nugroho, P. D. (2017). Isoalsi dan Karakterisasi Fag Litik Staphylococcus aureusResisten Antibiotik. URL: https://repository.ipb.ac.id/handle/123456789/83668 (Accessed on August 12, 2025)
Nugroho, P. D., Budiarti, S., & Rusmana, I. (2016). Characterization of lytic phage Staphylococcus aureusfrom dairy farm cows in Indonesia. URL: https://repository.poltekkesjkt2.ac.id/index.php?p=fstream-pdf&fid=7493&bid=6840 (Accessed on August 12, 2025)
Oliva, A., Stefani, S., Venditti, M., & Di Domenico, E. G. (2021). Biofilm-Related Infections in Gram-Positive Bacteria and the Potential Role of the Long-Acting Agent Dalbavancin. Frontiers in Microbiology, 12. DOI: https://dx.doi.org/10.3389/fmicb.2021.749685
O’Neill, J. (2016). Tackling Drug-Resistant Infections Globally: Final report and recommendations. URL: https://amr-review.org/sites/default/files/160518_Final%20paper_with%20cover.pdf (Accessed on August 12, 2025)
Prasetyaning Amukti, D., Indah Pratami, R., & Gumelar, G. (2024). Tinjauan Literatur tentang Hubungan Mutasi Genetik dengan Resistensi Obat pada Mycobacterium tuberculosis. Journal of Pharmacy and Halal Studies, 2 (1): 6–12. DOI: https://dx.doi.org/10.70608/j8dmhg15
Prestinaci, F., Pezzotti, P., & Pantosti, A. (2015). Antimicrobial resistance: A global multifaceted phenomenon. Pathogens and Global Health, 109 (7): 309–318. DOI: https://dx.doi.org/10.1179/2047773215Y.0000000030
Salsabila, M. K., Rukaya, B. E., & Syuhada, S. (2025). Evaluasi Aktivitas Antibakteri Minyak Jintan Hitam Terhadap Bakteri Gram-Positif dan Gram-Negatif: Studi pada Staphylococcus aureusdan Pseudomonas aeruginosa. Bioscientist: Jurnal Ilmiah Biologi, 13 (1): 218. DOI: https://dx.doi.org/10.33394/bioscientist.v13i1.14950
Sanchez, M., Kolar, S. L., Müller, S., Reyes, C. N., Wolf, A. J., Ogawa, C., Singhania, R., De Carvalho, D. D., Arditi, M., Underhill, D. M., Martins, G. A., & Liu, G. Y. (2017). O-Acetylation of Peptidoglycan Limits Helper T Cell Priming and Permits Staphylococcus aureusReinfection. Cell Host and Microbe, 22 (4): 543–551.e4. DOI: https://dx.doi.org/10.1016/j.chom.2017.08.008
Sari, M. A. R., Qurrohman, M. T., & Dewangga, V. S. (2024). Detection of mecA Gene As a Marker for Staphylococcus aureusTypes of Methicillin Resistant Staphylococcus aureus(MRSA) Using PCR Technique. Jurnal Biologi Tropis, 24 (4): 204–211. DOI: https://dx.doi.org/10.29303/jbt.v24i4.7539
Shimamori, Y., Mitsunaka, S., Yamashita, H., Suzuki, T., Kitao, T., Kubori, T., Nagai, H., Takeda, S., & Ando, H. (2021). Staphylococcal phage in combination with Staphylococcus epidermidis as a potential treatment for Staphylococcus aureus-associated atopic dermatitis and suppressor of phage-resistant mutants. Viruses, 13 (1). DOI: https://dx.doi.org/10.3390/v13010007
Skrupky, L. P., Micek, S. T., & Kollef, M. H. (2009). Bench-to-bedside review: Understanding the impact of resistance and virulence factors on methicillin-resistant Staphylococcus aureusinfections in the intensive care unit. Critical Care, 13 (5). DOI: https://dx.doi.org/10.1186/cc8028
Sukertiasih, N. K., Megawati, F., Meriyani, H., & Sanjaya, D. A. (2021). Studi Retrospektif Figurean Resistensi Bakteri terhadap Antibiotik. Jurnal Ilmiah Medicamento, 7 (2): 108–111. DOI: https://dx.doi.org/10.36733/medicamento.v7i2.2177
Talbot, G. H., Bradley, J., Edwards, J. E., Gilbert, D., Scheid, M., & Bartlett, J. G. (2006). Bad bugs need drugs: An update on the development pipeline from the Antimicrobial Availability Task Force of the Infectious Diseases Society of America. Clinical Infectious Diseases, 42 (5): 657–668. DOI: https://dx.doi.org/10.1086/499819
Tong, S. Y. C., Davis, J. S., Eichenberger, E., Holland, T. L., & Fowler, V. G. (2015). Staphylococcus aureusinfections: Epidemiology, pathophysiology, clinical manifestations, and management. Clinical Microbiology Reviews, 28 (3): 603–661. DOI: https://dx.doi.org/10.1128/CMR.00134-14
Treangen, T. J., Maybank, R. A., Enke, S., Friss, M. B., Diviak, L. F., David, D. K., Koren, S., Ondov, B., Phillippy, A. M., Bergman, N. H., & Rosovitz, M. J. (2014). Complete genome sequence of the quality control strain Staphylococcus aureussubsp. aureus ATCC 25923. Genome Announcements, 2 (6). DOI: https://dx.doi.org/10.1128/genomeA.01110-14
Widodo, L. U. (2022). Mikrobiologi. 3rd Ed., Vol. 5. Penerbit Universitas Terbuka. URL: https://pustaka.ut.ac.id/lib/biol4223-mikrobiologi-edisi-3/ (Accessed on August 12, 2025)
World Health Organization. (2017). WHO publishes list of bacteria for which new antibiotics are urgently needed. URL: https://www.who.int/news-room/detail/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed (Accessed on August 12, 2025)
World Health Organization. (2022). Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report 2022. World Health Organization. URL: https://iris.who.int/bitstream/handle/10665/364996/9789240062702-eng.pdf (Accessed on August 12, 2025)
Yehl, K., Lemire, S., Yang, A. C., Ando, H., Mimee, M., Torres, M. D. T., de la Fuente-Nunez, C., & Lu, T. K. (2019). Engineering Phage Host-Range and Suppressing Bacterial Resistance through Phage Tail Fiber Mutagenesis. Cell, 179 (2): 459–469.e9. DOI: https://dx.doi.org/10.1016/j.cell.2019.09.015
Young, R. (2002). Bacteriophage Holins: Deadly Diversity. URL: https://pubmed.ncbi.nlm.nih.gov/11763969/ (Accessed on August 12, 2025)
License
Copyright (c) 2025 Ivan Armadi Hasugian, Hikmah Zikriyani

This work is licensed under a Creative Commons Attribution 4.0 International License.
Jurnal Biologi Tropis is licensed under a Creative Commons Attribution 4.0 International License.
The copyright of the received article shall be assigned to the author as the owner of the paper. The intended copyright includes the right to publish the article in various forms (including reprints). The journal maintains the publishing rights to the published articles.
Authors are permitted to disseminate published articles by sharing the link/DOI of the article at the journal. Authors are allowed to use their articles for any legal purposes deemed necessary without written permission from the journal with an acknowledgment of initial publication to this journal.