Peran Vegetasi Dominan Pada Karakteristik Tanah di Lahan Bera, Kampung Womnowi, Distrik Sidey, Manokwari

Slamet Arif Susanto, Heru Joko Budirianto, Agatha Cecilia Maturbongs

Abstract

Abstrak: Selama proses suksesi, vegetasi merupakan satu dari komponen utama untuk meningkatkan kesuburan tanah. Tujuan penelitian ini adalah untuk menganalisis dan mendeskripsikan peran vegetasi dominan pada karakteristik tanah di lahan bera berumur 15 tahun Kampung Womnowi, Distrik Sidey, Manokwari. Vegetasi dominan ditentukan berdasarkan data indeks nilai penting (INP) analisis vegetasi. Sampel tanah diambil secara komposit pada luasan lahan 1 hektar dari dua kedalaman tanah (0–10 cm dan 10–20 cm). Vegetasi yang mendominasi lahan bera secara berurutan adalah Pometia pinnata, Dracontomelon dao, Octomeles sumatrana, Lansium domesticum, dan Pimelodendron amboinicum. Kehadiran O. sumatrana mengindikasikan lahan bera tanah aluvial, lebih lanjut terbukti karena lahan bera tersebut berdekatan dengan Sungai Womnowi. Karakteristik fisik tanah didominasi oleh fraksi lempung dan unsur makro lebih tinggi pada kedalaman 0–10 cm dibanding kedalaman 10–20 cm. Karakteristik tanah menunjukkan bahwa tanah tergolong masam (pH 5.4–5.6), kadar karbon organik tanah sedang (1.07–3.39%), kadar nitrogen total rendah (0.17–0.53%), kadar fosfor tersedia tergolong tinggi (10.7–22.4 ppm), kapasitas tukar kation (KTK) tergolong tinggi (10.50–20.32 cmol kg-1), kejenuhan basa tergolong sangat tinggi (65.4–66.7%), dan kadar Al3+ and H+ sangat rendah. Secara keseluruhan urutan KTK menunjukkan Ca > Mg > Na > K yang mengonfirmasi tanah aluvial dan pencucian kalium terjadi dengan cepat. Rendahnya kadar kalium dapat dihubungkan dengan penggunaan unsur tersebut untuk pembentukan buah L. domesticum. Selama pemberaan 15 tahun, vegetasi dominan memengaruhi karakteristik tanah.

Kata kunci: vegetasi pohon, kesuburan tanah, analisis tanah, aluvial, Papua Barat

Abstract: During succesional season vegetation is one of major compound to increase soil fertility. The purpose of this study was to analyzed and description dominant vegetation and their contribution to soil characteristic at fallow land 15 years old Womnowi Village, Sidey District, Manokwari. To determine dominant vegetations we used data important value index (IVI) of vegetation. Two depth of sample soils (0–10 cm dan 10–20 cm) were taken from one hectare area by composite technique. The dominant vegetation on fallow land dominated by Pometia pinnata, Dracontomelon dao, Octomeles sumatrana, Lansium domesticum, and Pimelodendron amboinicum respectively. Presence of O. sumatrana was indicated that the type of aluvial fallow land, further it is proven because the fallow land is close to the Womnowi River. Soil physical characteristic dominated by clay fractions, macronutrient was higher in depth 0-10 cm than 10-20 cm. Characteristic of soil shows acidic soils (pH 5.4–5.6), moderate of soil organic carbon (1.07–3.39%), total of nitrogen was low (0.17–0.53%), high available phosphorus (10.7–22.4 ppm), moderate cation exchange capacity (CEC) (10.50–20.32 cmol kg-1), very high base saturation (65.4–66.7%), and very lows of Al3+ and H+. Overall the order of CEC shows Ca > Mg > Na > K respectively confirmed aluvial soil and fast leached potassium in soil. Low potassium levels are thought be related to the use of the element for fruits formation of L. domesticum. During 15 year fallowed, dominant vegetation had influence to soil characteristic.

Key words: tree vegetation, soil fertility, soil analysis, alluvial, West Papua

Keywords

vegetasi pohon; kesuburan tanah; analisis tanah; aluvial; Papua Barat

Full Text:

PDF

References

Abadın J, González-Prieto, S.J., Sarmiento, L., Villar, M.C. & Carballas, T. (2002). Successional dynamics of soil characteristics in a long fallow agricultural system of the high tropical Andes. Soil Biology and Biochemistry. 34(11): 1739–1748. DOI: https://doi.org/10.1016/S0038-0717(02)00161-X.

Abubakar, S.M. (1996). Rehabilitation of degraded lands by means of fallowing in a semi-arid area of northern Nigeria. Land Degradation & Development. 7(2): 133–144. DOI: https://doi.org/10.1002/(SICI)1099-145X(199606)7:2%3C133::AID LDR223%3E3.0.CO;2-8.

Alegre, J.C., Rao, M.R., Arevalo, L.A., Guzman, W. & Faminow M.D. (2005). Planted tree fallows for improving land productivity in the humid tropics of Peru. Agriculture, Ecosystems & Environment. 110(1–2): 104–117. DOI: https://doi.org/10.1016/j.agee.2005.04.007.

Allen, B. & Filer, C. (2015). Is the “Bogeyman” Real? Shifting cultivation and the forests, Papua New Guinea. In Shifting Cultivation and Environmental Change: Indigenous people, agriculture and forest conservation (pp. 517–520). Routledge. DOI: http://hdl.handle.net/1885/20119.

Anderson, C., Peterson, M. & Curtin, D. (2017). Base cations, K+ and Ca2+, have contrasting effects on soil carbon, nitrogen and denitrification dynamics as pH rises. Soil Biology and Biochemistry. 113: 99–107. DOI: https://doi.org/10.1016/j.soilbio.2017.06.002.

Asadu, C.L.A., Nwafor, I.A. & Chibuike, G.U. (2015). Contributions of microorganisms to soil fertility in adjacent forest, fallow and cultivated land use types in Nsukka, Nigeria. International Journal of Agriculture and Forestry. 5(3): 199–204. https://www.researchgate.net/profile/Charles_Asadu/publication/233266267_Variations_in_Soil_Physical_Properties_in_a_Cleared_Forestland_Continuously_Cultivated_for_Seven_Years_in_Eastern_Nsukka_Nigeria/links/55bf446908aed621de122d64/Variations-in-Soil-Physical-Properties-in-a-Cleared-Forestland-Continuously-Cultivated-for-Seven-Years-in-Eastern-Nsukka-Nigeria.pdf.

Balai Penelitian Tanah [BALITTANAH]. (2005). Analisis kimia tanah, tanaman, air dan pupuk. Badan Penelitian dan Pengembangan Pertanian Departemen Pertanian, Bogor, Indonesia (Vol. 1) pp. 117-120 Bogor. http://balittanah.litbang.pertanian.go.id/ind/dokumentasi/juknis/juknis_kimia.pdf (Accessed on May 14, 2018).

Becker, J., Pabst, H., Mnyonga, J. & Kuzyakov, Y. (2015). Annual litterfall dynamics and nutrient deposition depending on elevation and land use at Mt. Kilimanjaro. Biogeosciences. 12(19): 5635–5646. DOI: http://doi.org/10.5194/bg-12-5635-2015.

Boone, R.D., Grigal, D.F., Sollins, P., Ahrens, R.J. & Armstrong, D.E. (1999). Soil sampling, preparation, archiving, and quality control. In Standard soil methods for long-term ecological research. Oxford University Press, New York (pp. 133–136). https://www.researchgate.net/profile/Khalid_Azim/post/Which_is_the_correct_way_of_taking_soil_samples/attachment/59d62172c49f478072e988dc/AS%3A272261005443082%401441923490260/download/Soil+sampling+preparation+archiving+and+quality+control+Robertson+et+al+1999.pdf. (Accessed on May 17, 2018).

Cakmak, I., Hengeler, C. & Marschner, H. (1994). Changes in phloem export of sucrose in leaves in response to phosphorus, potassium and magnesium deficiency in bean plants. Journal of Experimental Botany. 45(9): 1251–1257. DOI: https://doi.org/10.1093/jxb/45.9.1251.

Celentano, D., Zahawi, R.A., Finegan, B., Ostertag, R., Cole, R.J. & Holl, K.D. (2011). Litterfall dynamics under different tropical forest restoration strategies in Costa Rica. Biotropica. 43(3): 279–287. DOI: https://doi.org/10.1111/j.1744-7429.2010.00688.x.

Chmolowska, D., Hamda, N. & Laskowski, R. (2017). Cellulose decomposed faster in fallow soil than in meadow soil due to a shorter lag time. Journal of Soils and Sediments. 17(2): 299–305. DOI: https://doi.org/10.1007/s11368-016-1536-9.

Cuevas, E. & Medina, E. (1988). Nutrient dynamics within Amazonian forests. II Fine root growth, nutrient availability and leaf litter decomposition. Oecologia 76: 222–235. DOI: https://doi.org/10.1007/BF00379956.

De Michele, R., Loqué, D., Lalonde, S. & Frommer, W.B. (2012). Ammonium and urea transporter inventory of the Selaginella and Physcomitrella genomes. Frontiers in Plant Science. 3: 1–19. DOI: https://doi.org/10.3389/fpls.2012.00062.

González-Prieto, S.J., Cabaneiro, A., Villar, M.C., Carballas, T. & Carballas, M. (1996). Effect of soil characteristics on N mineralization capacity in 112 native and agricultural soils from the northwest of Spain. Biology and Fertility of Soils. 22(3): 252–260. DOI: https://doi.org/10.1007/BF00382521.

Gosz, J.R., Likens, G.E. & Bormann, F.H. (1973). Nutrient release from decomposing leaf and branch litter in the Hubbard Brook Forest, New Hampshire. Ecological Monographs. 43(2): 173-191. DOI: https://doi.org/10.2307/1942193.

Gruba, P. & Mulder, J. (2015). Tree species affect cation exchange capacity (CEC) and cation binding properties of organic matter in acid forest soils. Science of the Total Environment. 511: 655–662. DOI: https://doi.org/10.1016/j.scitotenv.2015.01.013.

Hartemink, A.E. & O’Sullivan, J.N. (2001). Leaf litter decomposition of Piper aduncum, Gliricidia sepium and Imperata cylindrica in the humid lowlands of Papua New Guinea. Plant and Soil. 230(1): 115–124. DOI: https://doi.org/10.1023/A:1004868502539.

Hassink, J., Neutel, A.M. & De Ruiter, P.C. (1994). C and N mineralization in sandy and loamy grassland soils: The role of microbes and microfauna. Soil Biology and Biochemistry. 26(11): 1565–1571. DOI: https://doi.org/10.1016/0038-0717(94)90099-X.

Johannes, A., Matter, A., Schulin, R., Weisskopf, P., Baveye, P.C. & Boivin, P. (2017). Optimal organic carbon values for soil structure quality of arable soils. Does clay content matter?. Geoderma. 302: 14–21. DOI: https://doi.org/10.1016/j.geoderma.2017.04.021.

Junqueira, A.B., Stomph, T.J., Clement, C.R. & Struik, P.C. (2016). Variation in soil fertility influences cycle dynamics and crop diversity in shifting cultivation systems. Agriculture, Ecosystems & Environment. 215: 122–132. DOI: https://doi.org/10.1016/j.agee.2015.09.015.

Kamble, P.N. & Bååth, E. (2014). Induced N-limitation of bacterial growth in soil: effect of carbon loading and N status in soil. Soil Biology and Biochemistry. 74: 11–20. DOI: https://doi.org/10.1016/j.soilbio.2014.02.015.

Kooch, Y., Rostayee, F. & Hosseini, S.M. (2016). Effects of tree species on topsoil properties and nitrogen cycling in natural forest and tree plantations of northern Iran. Catena. 144: 65–73. DOI: https://doi.org/10.1016/j.catena.2016.05.002.

Lousier, J.D & Parkinson, D. (1978). Chemical element dynamic in decomposing leaf litter. Canadian Journal of Botany. 56(21): 2795–2812. DOI: https://doi.org/10.1139/b78-335.

McCauley, A., Jones, C. & Jacobsen, J. (2009). Soil pH And Organic Matter. Nutrient Management Module (Vol. 8). USA: Montana State University. https://pdfs.semanticscholar.org/7501/ac8777b94f333a50a0497f60e809950a14f2.pdf. (Accessed on May 14, 2018).

Mensah, J.K., Akomeah, P.A. & Eifediyi, E.K. (2007). Soil fertility regeneration of impoverished ultisols of Edo State Using Gliricidia sepium Jacq Walp. Journal of Agronomy. 6(4): 593–596. DOI: http://dx.doi.org/10.3923/ja.2007.593.596.

Paijmans, K (editor). (1976). New Guinea Vegetation. Canberra (AU). Commonwealth Scientific and Industrial Research Organization in association with the Australian National University Pr. https://openresearch-repository.anu.edu.au/bitstream/1885/114816/2/b12189868.pdf (Accessed on April 17, 2019).

Ragasa, C.Y., Batarra, T.C., Vivar, J.L.A., Mariquit, M. & Shen, C.C. (2017). Chemical constituents of Dracontomelon dao (Blanco) Merr. et Rolfe. Pharmacognosy Journal. 9(5): 654–656. DOI: http://dx.doi.org/10.5530/pj.2017.5.103.

Rogers, H.M. (2002). Litterfall decomposition and nutrient release in a lowland tropical rain forest, Marobe Province, Papua New Guinea. Journal of Tropical Ecology. 18(3): 449–456. DOI: https://doi.org/10.1017/S0266467402002304.

Ross, R. (1954). Ecological studies on the rain forest of Southern Nigeria. III. Secondary succession in the Shasha reserve. Journal of Ecology. 42: 259–282. DOI: https://www.jstor.org/stable/2256861?seq=1.

Saini, G.R. (1971). Chemical and physical properties of coastal aluvial soils of New Brunswick. Geoderma. 5(2): 111–118. DOI: https://doi.org/10.1016/0016-7061(71)90016-4.

Sanchez, P.A. (1999). Improved fallows come of age in the tropics. Agroforstry Siystem 47(1-3): 3–12. DOI: https://doi.org/10.1023/A:1006287702265.

Sayer, E.J. & Tanner, E.V.J. (2010). Experimental investigation of the importance of litterfall in lowland semi-evergreen tropical forest nutrient cycling. Journal of Ecology. 98(5): 1052–1062. DOI: https://doi.org/10.1111/j.1365-2745.2010.01680.x.

Schwendener, C.M., Lehmann, J., de Camargo, P.B., Luizao, R.C.C. & Fernandes, E.C.M. (2005). Nitrogen transfer between high-and low-quality leaves on a nutrient-poor Oxisol determined by 15N enrichment. Soil Biology and Biochemistry. 37(4): 787–794. DOI: https://doi.org/10.1016/j.soilbio.2004.10.011.

Susanto, S.A. (2019). Sebaran ukuran diameter pohon untuk menentukan umur dan regenerasi hutan di lahan bera Womnowi, Sidey Manokwari. Biotropika. 7(5): 67–76. DOI: http://dx.doi.org/10.21776/ub.biotropika.2019.007.02.4.

Susanto, S.A., Budirianto, H.J. & Maturbongs, A.C. (2018). Komposisi jenis tumbuhan di tanah aluvial Lahan bera diperkaya Womnowi, Distrik Sidey Manokwari. In Prosiding Seminar Nasional MIPA UNIPA (Vol. 3, pp. 22–32). https://prosiding.fmipa.unipa.ac.id/index.php/SNMIPAUNIPA/article/download/4/3.

Susanto, S.A., Budirianto, H.J. & Maturbongs, A.C. (2019). Suhu dan kelembaban berdampak pada produktivitas serasah basah vegetasi dominan di lahan bera Womnowi Distrik Sidey Manokwari Papua Barat. BIOMA: Jurnal Biologi Makassar. 4(1): 1–10. http://journal.unhas.ac.id/index.php/bioma/article/viewFile/5965/3426.

Susanto, S.A., Budirianto, H.J. & Maturbongs, A.C. (2020). Estimasi produktivitas serasah di lahan bera Womnowi, Distrik Sidey, Manokwari. Jurnal Ilmu Pertanian Indonesia. 25(2): 185–192. DOI: https://doi.org/10.18343/jipi.25.2.185.

Susanto, S.A., Budirianto, H.J., Maturbongs, A.C. & Putra, S.A. (2019). Potensi dan keragaman tumbuhan bawah non-kayu di lahan bera Womnowi Distrik Sidey Manokwari. Ulin: Jurnal Hutan Tropis. 3(1): 10–18. http://dx.doi.org/10.32522/u-jht.v3i1.1878.

Szott, L.T, Palm, C. & Davey, C. (1994). Biomass and litter accumulation under managed and natural tropical fallows. Forest Ecology and Management. 67(2): 177–190. DOI: https://doi.org/10.1016/0378-1127(94)90015-9.

Szott, L.T. & Palm, C.A. (1996). Nutrient stocks in managed and natural humid tropical fallows. Plant and Soil. 186(2): 293–309. DOI: https://doi.org/10.1007/BF02415525.

Toky, O.P. & Ramakrishnan, P.S. (1984). Litter decomposition related to secondary succession and species type under slash and burn agriculture (Jhum) in north-eastern India. In Proceedings of the Indian National Science Academy. (Vol.1, pp. 57–65). DOI: https://www.insa.nic.in/writereaddata/UpLoadedFiles/PINSA/Vol50B_1984_1_Art10.pdf.

Uyovbisere, E.O. & Lombim, G. (1991). Efficient fertilizer use for increased crop production: The sub-humid Nigeria experience. Fertilizer Research. 29: 81–94. DOI: DOI: https://doi.org/10.1007/BF01048991.

Van Dyne, G.M. & Vogel, W.G. (1967). Relation of Selaginella densa to site, grazing, and climate. Ecology. 48(3): 438–444. DOI: https://doi.org/10.2307/1932679.

Wood, S.L.R., Rhemtulla, J.M. & Coomes, O.T. (2016). Intensification of tropical fallow based agriculture: Trading-off ecosystem services for economic gain in shifting cultivation landscapes?. Agriculture, Ecosystem & Environment. 215(0): 47–56. https://doi.org/10.1016/j.agee.2015.09.005.

Zinn, Y.L., Marrenjo, G.J. & Silva, C.A. (2018). Soil C: N ratios are unresponsive to land use change in Brazil: A comparative analysis. Agriculture, Ecosystems & Environment. 255: 62–72. https://doi.org/10.1016/j.agee.2017.12.019.

Refbacks

  • There are currently no refbacks.