Biomass and Carbon Stocks in Post-Agriculture Secondary Forest in Manokwari, West Papua, Indonesia
Authors
Slamet Arif Susanto , Agatha Cecilia Maturbongs , Heru Joko Budirianto , Eko Tenoyo Sriwidodo , Agustinus Kilmaskossu , Peniwidiyanti PeniwidiyantiDOI:
10.29303/jbt.v23i4.5631Published:
2023-09-13Issue:
Vol. 23 No. 4 (2023): October - DecemberKeywords:
Aboveground biomass, IPCC, succession, tree density.Articles
Downloads
How to Cite
Downloads
Metrics
Abstract
Vegetations in post-agriculture forests (PAF) have the potential to absorb carbon dioxide and store it in to the form of biomass. However, information on carbon stocks in post-agriculture secondary forest in Papua, Indonesia still needs to be available. This study aimed to analyze the density of vegetation and its relationship to the carbon stock of aboveground vegetation biomass on PAF in the lowland of Manokwari, West Papua. This study was conducted on PAF aged 4 and 7 years using a one-factor, completely randomized design. Carbon stock is calculated using an allometric equation based on a diameter at breast height of 1.30 m (dbh ≥5cm). The results showed that 60% of the relative density of trees on the two PAF’s was composed by Premna odorata, Piper aduncum, and Macaranga tanarius. Carbon stocks on PAF aged 4 and 7 years reach 550 kg/ha and 140 kg/ha respectively. There is an increase in aboveground biomass and carbon stock with relative tree density and, tree diameter, which is significantly affected by the age of the PAF (P<0,002). The low carbon stock on PAF aged four years indicates that there has been a significant decrease in soil fertility after several years of cultivation by the local Papuan community. Therefore, there must be a difference in land use management between natural secondary forest and post-agriculture forest.
References
Basuki, T. M., van Laake, P. E., Skidmore, A. K., & Hussin, Y. A. (2009). Allometric equations for estimating the aboveground biomass in tropical lowland Dipterocarp forests. Forest Ecology and Management, 257(8):1684–1694. https://doi.org/10.1016/j.foreco.2009.01.027.
Behera, S. K., Sahu, N., Mishra, A. K., Bargali, S. S., Behera, M. D., & Tuli, R. (2017). Aboveground biomass and carbon stock assessment in Indian tropical deciduous forest and relationship with stand structural attributes. Ecological Engineering, 99:513–524. https://doi.org/10.1016/j.ecoleng.2016.11.046.
Brunet, J., de Frenne, P., Holmström, E., & Mayr, M. L. (2012). Life-history traits explain rapid colonization of young post-agricultural forests by understory herbs. Forest Ecology and Management 278:55–62. http://dx.doi.org/10.1016/j.foreco.2012.05.002.
Cardozo, E. G., Celentano, D., Rousseau, G. X., Silva, H. R. E., Muchavisoy, H. M., & Gehring, C. (2022). Agroforestry systems recover tree carbon stock faster than natural succession in Eastern Amazon, Brazil. Agroforestry Systems, 96(5-6): 941–956. https://doi.org/10.1007/s10457-022-00754-7.
Castaño, C., Hallin, S., Egelkraut, D., Lindahl, B. D., Olofsson, J., & Clemmensen, K. E. (2023). Contrasting plant–soil–microbial feedbacks stabilize vegetation types and uncouple topsoil C and N stocks across a subarctic–alpine landscape. New Phytologist, 238(6):2621–2633. https://doi.org/10.1111/nph.18679.
Chave, J., Andalo, C., Brown, S., Chairns, M. A., Chambers, J. Q., Eamus, D., Fölster, H., Fromard, F., Higuchi, N., Kira, T., Lescure, J-P., Nelson, B. W., Ogawa, H., Puig, H., Ríera, B., & Yamakura, T. (2005). Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 145:87–99. https://doi.org/10.1007/s00442-005-0100-x.
de Kok, R. (2013). The genus Premna l. (Lamiaceae) in the Flora Malesiana area. Kew Bulletin, 68:55–84. https://doi.org/10.1007/s12225-013-9433-5.
de Souza Almeida, L. L., Frazão, L. A., Lessa, T. A. M., Fernandes, L. A., de Carvalho Veloso, Á. L., Lana, A. M. Q., de Souza, I. A., Pegoraro, R. F., & Ferreira, E. A. (2021). Soil carbon and nitrogen stocks and the quality of soil organic matter under silvopastoral systems in the Brazilian Cerrado. Soil & Tillage Research, 205: 104785. https://doi.org/10.1016/j.still.2020.104785.
Gebeyehu, G., Soromessa, T., Bekele, T., & Teketay, D. (2019). Carbon stocks and factors affecting their storage in dry Afromontane forests of Awi Zone, northwestern Ethiopia. Journal of Ecology and Environment, 43(1):1–18. https://doi.org/10.1186/s41610-019-0105-8.
Heinrich, V. H. A., Dalagnol, R., Cassol, H. L. G., Rosan, T. M., de Almeida, C. T., Silva Junior, C. H. L., Campanharo, W. A., House, J. I., Sitch, S., Hales, T. C., Adami, M., Anderson, L. O., & Aragão, L. E. O. C. (2021). Large carbon sink potential of secondary forests in the Brazilian Amazon to mitigate climate change. Nature Communication, 12(1):1785. https://doi.org/10.1038/s41467-021-22050-1.
Heriyanto, M. N., Priatna, D., & Samsoedin, I. 2020. Struktur tegakkan dan serapan karbon pada hutan sekunder kelompok hutan Muara Merang, Sumatera Selatan. Jurnal Sylva Lestari, 8(2):230–240. https://doi.org/10.23960/jsl28230-240.
Intergovernmental Panel on Climate Change (IPCC). (2003). In: Penman, J., Gytarsky, M., Hiraishi, T., Krug, T., Kruger, D., Pipatti, R., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Wagner, F. (Eds.), Good Practice Guidance for Land Use, Land-Use Change and Forestry. Institute for Global Environmental Strategies for the IPCC and IPCC National Greenhouse Gas Inventories Programme, Hayama, Kanagawa, Japan. ISBN 4-88788-003-0.
Jantawong, K., Elliott, S., & Wangpakapattanawong, P. (2017). Above-ground carbon sequestration during restoration of upland evergreen forest in Northern Thailand. Open Journal of Forestry, 7(2):157–171. https://doi.org/10.4236/ojf.2017.72010.
Jones, I. L., DeWalt, S. J., Lopez, O. R., Bunnefeld, L., Pattison, Z., & Dent, D. H. (2019). Above-and belowground carbon stocks are decoupled in secondary tropical forests and are positively related to forest age and soil nutrients respectively. Science of the Total Environment, 697:133987. https://doi.org/10.1016/j.scitotenv.2019.133987.
Karyati, K., Widiati, K. Y., Karmini, K., & Mulyadi, R. (2021). The allometric relationships for estimating above-ground biomass and carbon stock in an abandoned traditional garden in East Kalimantan, Indonesia. Biodiversitas Journal of Biological Diversity, 22(2):751–762. https://doi.org/10.13057/biodiv/d220228.
Khadanga, S. S., & Jayakumar, S. (2020). Tree biomass and carbon stock: understanding the role of species richness, elevation, and disturbance. Tropical Ecology, 61:128–141. https://doi.org/10.1007/s42965-020-00070-0.
Lirio, S. B., Macabeo, A. P. G., Paragas, E. M., Knorn, M., Kohls, P., Franzblau, S. G., Wang, Y., & Aguinaldo, M. A. M. (2014). Antitubercular constituents from Premna odorata Blanco. Journal of ethnopharmacology, 154(2), 471–474. https://doi.org/10.1016/j.jep.2014.04.015.
Ma, S-H., Eziz, H., Tian, D, Yan, Z-B., Cai, Q., Jiang, M-W., Ji, C-J. & Fang, J-Y. (2020). Size- and age-dependent increases in tree stem carbon concentration: implications for forest carbon stock estimations. Journal of Plant Ecology, 13(2):233–240. https://doi.org/10.1093/jpe/rtaa005.
Manaye, A., Tesfamariam, B., Tesfaye, M., Worku, A., & Gufi, Y. (2021). Tree diversity and carbon stocks in agroforestry systems in northern Ethiopia. Carbon Balance and Management, 16(1):14. https://doi.org/10.1186/s13021-021-00174-7.
Martínez-Sánchez, J. L., Tigar, B. J., Cámara, L., & Castillo, O. (2015). Relationship between structural diversity and carbon stocks in humid and sub-humid tropical forest of Mexico. Ecoscience, 22(2-4): 125–131. https://doi.org/10.1080/11956860.2016.1169384.
Mensah, S., Veldtman, R., Assogbadjo, A. E., Glèlè Kakaï, R., & Seifert, T. (2016). Tree species diversity promotes aboveground carbon storage through functional diversity and functional dominance. Ecology and Evolution, 6(20):7546–7557. https://doi.org/10.1002/ece3.2525.
Mukul, S. A., Herbohn, J., & Firn, J. (2020). Rapid recovery of tropical forest diversity and structure after shifting cultivation in the Philippines uplands. Ecology and Evolution, 10(4):7189–7211. https://doi.org/10.1002/ece3.6419.
Murdjoko, A., Brearley, F. Q., Ungirwalu, A., Djitmau, D. A., & Benu, N. M. (2022). Secondary succession after slash-and-burn cultivation in Papuan lowland forest, Indonesia. Forests, 13(3): 434. https://doi.org/10.3390/f13030434.
Ngo, K. M., Turner, B. L., Muller-Landau, H. C., Davies, S. J., Larjavaara, M., bin Nik Hassan, N. F., & Lum, S. (2013). Carbon stocks in primary and secondary tropical forests in Singapore. Forest Ecology and Management, 296: 81–89. https://doi.org/10.1016/j.foreco.2013.02.004.
Oliveira, C. P. D, Ferreira, R. L. C., da Silva, J. A. A., de Lima, R. B., Silva, E. A., da Silva, A. F., de Lucena, J. D. S., dos Santos, N. A. T., Lopes, I. J. C., de Lima Pessoa, M. M., & de Melo, C. L. S-M. S. (2021). Modeling and spatialization of biomass and carbon stock using LiDAR metrics in tropical dry forest, Brazil. Forest, 12(4):473. https://doi.org/10.3390/f12040473.
Orihuela-Belmonte, D. E., De Jong, B. H. J., Mendoza-Vega, J., Van der Wal, J., Paz-Pellat, F., Soto-Pinto, L., & Flamenco-Sandoval, A. (2013). Carbon stocks and accumulation rates in tropical secondary forests at the scale of community, landscape and forest type. Agriculture, Ecosystems & Environment, 171:72–84. https://doi.org/10.1016/j.agee.2013.03.012.
Peel, M. C., Finlayson, B. L., & McMahon, T. A. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences, 11(5): 1633–1644. https://doi.org/10.5194/hess-11-1633-2007.
Pothong, T., Elliott, S., Chairuangsri, S., Chanthorn, W., Shannon, D. P., & Wangpakapattanawong, P. (2022). New allometric equations for quantifying tree biomass and carbon sequestration in seasonally dry secondary forest in northern Thailand. New Forests, 53:17–36. https://doi.org/10.1007/s11056-021-09844-3.
Pragasan, L. A. (2022). Tree carbon stock and its relationship to key factors from a tropical hill forest of Tamil Nadu, India. Geology, Ecology, and Landscapes, 6(1):32–39. https://doi.org/10.1080/24749508.2020.1742510.
Robinson, S. J., van den Berg, E., Meirelles, G. S., & Ostle, N. (2015). Factors influencing early secondary succession and ecosystem carbon stocks in Brazilian Atlantic Forest. Biodiversity and Conservation, 24:2273–2291. https://doi.org/10.1007/s10531-015-0982-9.
Rogers, H. M., & Hartemink, A. E. (2000). Soil seed bank and growth rates of an invasive species, Piper aduncum, in the lowlands of Papua New Guinea. Journal of Tropical Ecology, 16:243–251. https://doi.org/10.1017/S0266467400001383.
Saimun, M. S. R., Karim, M. R., Sultana, F., & Arfin-Khan, M. A. (2021). Multiple drivers of tree and soil carbon stock in the tropical forest ecosystems of Bangladesh. Trees, Forests and People, 5: 100108. https://doi.org/10.1016/j.tfp.2021.100108.
Sari, R. R., Saputra, D. D., Hairiah, K., Rozendaal, D. M., Roshetko, J. M., & Van Noordwijk, M. (2020). Gendered species preferences link tree diversity and carbon stocks in cacao agroforest in Southeast Sulawesi, Indonesia. Land, 9(4):108. https://doi.org/10.3390/land9040108.
Tseng, M., Huo, Y., Chen, Y., & Chou, C. (2003). Allelopathic potential of Macaranga tanarius (L.) Muell.-Arg. Journal of Chemical Ecology 29(5):1269–1286.
Walker, A. P., De Kauwe, M. G., Bastos, A., Belmecheri, S., Georgiou, K., Keeling, R. F., & Zuidema, P. A. (2021). Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO2. New Phytologist, 229(5):2413–2445. https://doi.org/10.1111/nph.16866.
Wani, A. A., Bhat, A. F., Gatoo, A. A., Zahoor, S., Mehraj, B., Najam, N., Wani, Q. S., Islam, M. A., Murtaza, S., Dervash, M. A., & Joshi, P. K. (2021). Assessing relationship of forest biophysical factors with NDVI for carbon management in key coniferous strata of temperate Himalayas. Mitigation and Adaptation Strategies for Global Change, 26: 1–22. https://doi.org/10.1007/s11027-021-09937-6.
Wen, B., Xue, P., Zhang, N., Yan, Q., & Ji, M. (2015). Seed germination of the invasive species Piper aduncum as influenced by high temperature and water stress. Weed Research 55: 155–162. DOI: https://doi.org/10.1111/wre.12134
Author Biography
Peniwidiyanti Peniwidiyanti, Badan Riset dan Inovasi Nasional (BRIN)
License
Copyright (c) 2023 Slamet Arif Susanto, Agatha Cecilia Maturbongs, Heru Joko Budirianto, Eko Tenoyo Sriwidodo, Agustinus Kilmaskossu, Peniwidiyanti Peniwidiyanti
This work is licensed under a Creative Commons Attribution 4.0 International License.
Jurnal Biologi Tropis is licensed under a Creative Commons Attribution 4.0 International License.
The copyright of the received article shall be assigned to the author as the owner of the paper. The intended copyright includes the right to publish the article in various forms (including reprints). The journal maintains the publishing rights to the published articles.
Authors are permitted to disseminate published articles by sharing the link/DOI of the article at the journal. Authors are allowed to use their articles for any legal purposes deemed necessary without written permission from the journal with an acknowledgment of initial publication to this journal.