Analyzing Earth's Position based on the Anisotropic Characteristics of Cosmic Microwave Background Radiation

Penulis

Muhammad Khaidir Komala , Akhmad Aminuddin Bama , Supardi

DOI:

10.29303/jpft.v9i2.6284

Diterbitkan:

2023-12-20

Terbitan:

Vol 9 No 2 (2023): July-December

Kata Kunci:

Cosmic Microwave Background Radiation, Spherical Harmonic, Dipole

Articles

Cara Mengutip

Komala, M. K., Akhmad Aminuddin Bama, & Supardi. (2023). Analyzing Earth’s Position based on the Anisotropic Characteristics of Cosmic Microwave Background Radiation. Jurnal Pendidikan Fisika Dan Teknologi (JPFT), 9(2), 343–355. https://doi.org/10.29303/jpft.v9i2.6284

Unduhan

Data unduhan belum tersedia.

Metrik

Metrik sedang dimuat ...

Abstrak

This paper elaborates on the results of an exhaustive study regarding the Earth's position in the universe based on the Cosmic Microwave Background (CMB) radiation map, which is the latest discovery in modern astronomy. CMB radiation provides crucial insights into the early distribution of mass and energy in the universe. The aim of this research is to understand the theory and mechanisms behind the formation of polarity structures in the CMB and analyze their correlation with Earth's position in the overall structure of the universe. Intensity measurement data of CMB radiation published by COBE, WMAP, and Planck present temperature distribution data in coordinates in FITS (Flexible Image Transport System) format files. Subsequently, a spherical harmonic transformation is performed to obtain spherical harmonic coefficients a_lm as equations that represent dipole, quadrupole, octupole models, and various other multipole models. The analysis of the correlation in the temperature distribution of CMB radiation involves detailing various patterns found in the dipole, quadrupole, and octopole models, demonstrating quasi-symmetry characteristics with Earth at its center. An analysis of anisotropic CMB data yields an interesting hypothesis that the Earth's position plays a role in shaping the structure of the universe on a certain scale. Even more extremely, it can be said that Earth is at the center of the universe. This finding prompts profound contemplation about Earth's position in the structure of the cosmos, opening the door for further research in this field.

Referensi

Abramo, L. R., and Pereira, T. S. (2010). Testing gaussianity, homogeneity, and isotropy with the cosmic microwave background. Advances in Astronomy, DOI: https://doi.org/10.1155/2010/378203.

Aghanim, N., Armitage-Caplan, C., Arnaud, M., Ashdown, M., Atrio-Barandela, F., Aumont, J., ... & Rosset, C. (2014). Planck 2013 results. XXVII. Doppler boosting of the CMB: Eppur si muove. Astronomy & Astrophysics, 571, A27. DOI: https://doi.org/10.48550/arXiv.1303.5087.

Aghanim, N., Majumdar, S., and Silk, J. (2008). Secondary anisotropies of the CMB. Reports on Progress in Physics, 71(6), 066902. DOI: https://doi.org/10.1088/0034-4885/71/6/066902

Alpher, R. A., & Herman, R. (1948). Evolution of the Universe. Nature, 162(4124), 774-775. DOI: https://doi.org/10.1038/162774b0

Andrade, U., et al. (2018). A model-independent test of cosmic isotropy with low-z pantheon supernovae. The Astrophysical Journal, 865(2), 119. DOI: https://doi.org/10.3847/1538-4357/aadb90

Aprilia, R., Alifaturrohmah, M., Purnama, G., & Wahyuni, S. (2022). The Examination of the Wien’s Displacement Constant with Simulation and Simple Numerical Approaches. Physics Communication, 6(2), 71-78. DOI: https://doi.org/10.15294/physcomm.v6i2.39821

Arfken, G. B., Weber, H. J., and Harris, F. E. (2011). Mathematical Methods for Physicists: A Comprehensive Guide. Academic Press.

Assis, A. K., and Neves, M. C. (1995). History of the 2.7 K temperature prior to Penzias and Wilson. Apeiron, 2(3), 79-84.

Ball, D. W. (2013). Wien’s displacement law as a function of frequency. Journal of Chemical Education, 90(9), 1250-1252. DOI: https://doi.org/10.1021/ed400113z

Bennett, C. L., et al. (2013). Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Final maps and results. The Astrophysical Journal Supplement Series, 208(2), 20. DOI: https://doi.org/10.1088/0067-0049/208/2/20

Boas, M. L. (2006). Mathematical methods in the physical sciences. New Jersey : John Wiley & Sons.

Bucher, M. (2015). Physics of the cosmic microwave background anisotropy. International Journal of Modern Physics D, 24(02), 1530004. DOI: https://doi.org/10.1142/S0218271815300049.

Chiba, T., Mukohyama, S., and Nakamura, T. (1997). Anisotropy of the cosmic background radiation implies the violation of the strong energy condition in Bianchi type I universe. Physics Letters B, 408(1-4), 47-51. DOI: https://doi.org/10.1016/S0370-2693(97)00782-X.

Clarkson, C., and Maartens, R. (2010). Inhomogeneity and the foundations of concordance cosmology. Classical and Quantum Gravity, 27(12), 124008. DOI: https://doi.org/10.1088/0264-9381/27/12/124008.

Copi, C. J., Huterer, D., Schwarz, D. J., & Starkman, G. D. (2006). On the large-angle anomalies of the microwave sky. Monthly Notices of the Royal Astronomical Society, 367(1), 79-102. DOI: https://doi.org/10.1111/j.1365-2966.2005.09980.x.

Crawford, T. A. B., Hogg, D. C., and Hunt, L. E. (1961). A Horn‐Reflector Antenna for Space Communication. Bell System Technical Journal, 40(4), 1095-1116. DOI: https://doi.org/10.1002/j.1538-7305.1961.tb01639.x.

Das, R. (2015). Wavelength-and frequency-dependent formulations of Wien’s displacement law. Journal of Chemical Education, 92(6), 1130-1134. DOI: https://doi.org/10.1021/acs.jchemed.5b00116.

Derlet, P. M., and Choy, T. C. (1996). Planck's radiation law: A many-body theory perspective. Australian Journal of Physics, 49(3), 589-606. DOI: https://doi.org/10.1071/PH960589.

Dicke, R. H., Peebles, P. J. E., Roll, P. G., & Wilkinson, D. T. (1965). Cosmic black-body radiation. Astrophysical Journal, 142, 414-419. DOI: https://doi.org/10.1086/148306.

Durrer, R. (1996). Anisotropies in the cosmic microwave background: Theoretical foundations. International Journal of Theoretical Physics, 36, 2469-2487. DOI: https://doi.org/10.1007/BF02768937.

Goodman, J. (1995). Geocentrism reexamined. Physical Review D, 52(4), 1821. DOI: https://doi.org/10.1103/PhysRevD.52.1821.

Gordon, C., Hu, W., Huterer, D., & Crawford, T. (2005). Spontaneous isotropy breaking: a mechanism for CMB multipole alignments. Physical Review D, 72(10), 103002. DOI: https://doi.org/10.1103/PhysRevD.72.103002.

Gurzadyan, V. G., and Kocharyan, A. A. (1993). A new view on the problem of anisotropy of the cosmic background radiation. International Journal of Modern Physics D, 2(01), 97-104. DOI: https://doi.org/10.1142/S0218271893000088.

Hanisch, R. J., Farris, A., Greisen, E. W., Pence, W. D., Schlesinger, B. M., Teuben, P. J., ... & Warnock, A. (2001). Definition of the flexible image transport system (FITS). Astronomy and Astrophysics, 376(1), 359-380. DOI: https://doi.org/10.1051/0004-6361:20010923.

Hinshaw, G., Nolta, M. R., Bennett, C. L., Bean, R., Doré, O., Greason, M. R., ... & Wright, E. L. (2007). Three-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Temperature analysis. The Astrophysical Journal Supplement Series, 170(2), 288. DOI: https://doi.org/10.1086/513698.

Hinshaw, G., Weiland, J. L., Hill, R. S., Odegard, N., Larson, D., Bennett, C. L., ... & Wright, E. L. (2009). Five-year Wilkinson Microwave Anisotropy Probe* observations: Data processing, sky maps, and basic results. The Astrophysical Journal Supplement Series, 180(2), 225. DOI: https://doi.org/10.1088/0067-0049/180/2/225.

Hu, W. (2006). Concepts in CMB anisotropy formation. In The Universe at High-z, Large-Scale Structure and the Cosmic Microwave Background (pp. 207-239). Berlin, Heidelberg: Springer Berlin Heidelberg. DOI: https://doi.org/10.1007/BFb0102588.

Land, K., and Magueijo, J. (2007). The axis of evil revisited. Monthly Notices of the Royal Astronomical Society, 378(1), 153-158. DOI: https://doi.org/10.1111/j.1365-2966.2007.11749.x.

Lukash, V. (1998, December 16-21). Anisotropy of CMB and Cosmological Model. In N. Dadhich & J. Narlikar (Eds.), Gravitation and Relativity: At the turn of the Millennium, 15th International Conference on General Relativity and Gravitation (p. 343). Inter-University Centre for Astronomy and Astrophysics. DOI: https://doi.org/10.48550/arXiv.astro-ph/9803212.

Narlikar, J. V., and Wickramasinghe, N. C. (1967). Microwave background in a steady-state universe. Nature, 216(5110), 43-44. DOI: https://doi.org/10.1038/216043a0.

Peebles, P. J. E. (1993). Principles of Physical Cosmology (Vol. 27). Princeton University Press.

Peebles, P. J. E., Schramm, D. N., Turner, E. L., & Kron, R. G. (1991). The case for the relativistic hot big bang cosmology. Nature, 352(6338), 769-776. DOI: https://doi.org/10.1038/352769a0.

Pence, W. D., Chiappetti, L., Page, C. G., Shaw, R. A., & Stobie, E. (2010). Definition of the flexible image transport system (FITS), version 3.0. Astronomy and Astrophysics, 524, A42. DOI: https://doi.org/10.1051/0004-6361/201015362.

Penzias, A.A. and Wilson, R.W. (1965) A Measurement of Excess Antenna Temperature at 4080 Mc/s. The Astrophysical Journal, 142, 419-421. DOI: https://doi.org/10.1086/148307.

Planck, M. (1900). The theory of heat radiation. Entropie, 144(190), 164.

Schwarz, D. J., Starkman, G. D., Huterer, D., & Copi, C. J. (2004). Is the low-ℓ microwave background cosmic? Physical Review Letters, 93(22), 221301. DOI: https://doi.org/10.1103/PhysRevLett.93.221301.

Schwarz, D. J., Copi, C. J., Huterer, D., & Starkman, G. D. (2016). CMB anomalies after Planck. Classical and Quantum Gravity, 33(18), 184001. DOI: https://doi.org/10.1088/0264-9381/33/18/184001.

Smoot, G. F., Gorenstein, M. V., and Muller, R. A. (1977). Detection of anisotropy in the cosmic blackbody radiation. Physical Review Letters, 39(14), 898. DOI: https://doi.org/10.1103/PhysRevLett.39.898.

Snyder, J. P. (1987). Map Projections—A Working Manual (Vol. 1395). US Government Printing Office.

Snyder, J. P. (1997). Flattening the earth: two thousand years of map projections. University of Chicago Press.

Snyder, J. P., and Steward, H. (Eds.). (1989). Bibliography of Map Projections (No. 1856). US Government Printing Office.

Snyder, J. P., and Voxland, P. M. (1989). An Album of Map Projections (No. 1453). US Government Printing Office.

Starkman, G.D., Copi, C.J., Huterer, D., & Schwarz, D.J. (2012). The Oddly Quiet Universe: How the CMB challenges cosmology's standard model. Romanian Journal of Physics, 57, 979-991. DOI: https://doi.org/10.48550/arXiv.1201.2459.

Tegmark, M., de Oliveira-Costa, A., and Hamilton, A. J. (2003). High resolution foreground cleaned CMB map from WMAP. Physical Review D, 68(12), 123523. DOI: https://doi.org/10.1103/PhysRevD.68.123523.

Weinberg, S. (2008). Cosmology. Oxford : Oxford University Press.

Williams, B. W. (2014). A Specific Mathematical Form for Wien’s Displacement Law as v max/T= constant. Journal of Chemical Education, 91(5), 623-623. DOI: https://doi.org/10.1021/ed400827f.

WMAP. (2014). Fluctuations in the Cosmic Microwave Background. Retrieved from https://wmap.gsfc.nasa.gov/universe/bb_cosmo_ fluct.html.

Zed, M. (2008). Metode Penelitian Kepustakaan. Yayasan Pustaka Obor Indonesia.

Zhou, Y., Zhao, Z.-C., and Chang, Z. (2017). Searching for a cosmological preferred direction with 147 rotationally supported galaxies. The Astrophysical Journal, 847(2), 86. DOI: https://doi.org/10.3847/1538-4357/aa8991

Biografi Penulis

Muhammad Khaidir Komala, 081369710902

Nama saya Muhammad Khaidir Komala, S.Si (Lahat, 30 juni 1997), saya adalah seorang mahasiswa pascasarjana di jurusan Fisika fakultas MIPA Universitas Sriwijaya, Pendidikan terakhir saya S1-Fisika di jurusan yang sama.

Akhmad Aminuddin Bama, 081328740911

Nama saya Akhmad Aminuddin Bama, saya adalah seorang Dosen Fisika Teori di Jurusan Fisika, Fakultas MIPA, Universitas Sriwijaya. Pendidikan terakhir saya sebagai berikut;

  1. S1 Fisika - Institut Teknologi Sepuluh November (1995)
  2. S2 Fisika - Universitas Gadjah Mada (2003)
  3. S3 Fisika - Universitas Gadjah Mada (2007)

Supardi

Nama saya Supardi, saya adalah seorang Dosen Fisika Teori di Jurusan Fisika, Fakultas MIPA, Universitas Sriwijaya. Pendidikan terakhir saya sebagai berikut;

  1. S1 Pendidikan Fisika - Universitas Sriwijaya (1997)
  2. S2 Fisika - Institut Teknologi Bandung (2003)
  3. S3 Fisika - Institut Teknologi Bandung (2007)

Lisensi

Hak Cipta (c) 2023 Muhammad Khaidir Komala, Aminuddina Bama, Supardi

Creative Commons License

Artikel ini berlisensiCreative Commons Attribution-ShareAlike 4.0 International License.

Penulis yang menerbitkan Jurnal Pendidikan Fisika dan Teknologi (JPFT) setuju dengan ketentuan sebagai berikut:

  1. Penulis memiliki hak cipta dan memberikan hak jurnal untuk publikasi pertama dengan karya yang dilisensikan secara bersamaan di bawah Lisensi Internasional Creative Commons Attribution-ShareAlike License 4.0 (Lisensi CC-BY-SA). Lisensi ini memungkinkan penulis untuk menggunakan semua artikel, kumpulan data, grafik, dan lampiran dalam aplikasi penambangan data, mesin pencari, situs web, blog, dan platform lain dengan memberikan referensi yang sesuai. Jurnal memungkinkan penulis untuk memegang hak cipta tanpa batasan dan akan mempertahankan hak penerbitan tanpa batasan.
  2. Penulis dapat membuat pengaturan kontrak tambahan yang terpisah untuk distribusi non-eksklusif dari versi jurnal yang diterbitkan dari karya tersebut (misalnya, mempostingnya ke penyimpanan institusional atau menerbitkannya dalam sebuah buku), dengan pengakuan atas publikasi awalnya di Jurnal Pendidikan Fisika dan Teknologi (JPFT).
  3. Penulis diizinkan dan didorong untuk memposting karya mereka secara online (misalnya, di repositori institusional atau di situs web mereka) sebelum dan selama proses pengiriman, karena hal itu dapat mengarah pada pertukaran yang produktif, serta kutipan yang lebih awal dan lebih besar dari karya yang diterbitkan (Lihat The Pengaruh Akses Terbuka).