Comparative Modeling and Molecular Docking of Alcohol Acyltransferase in Fruit Aroma Biosynthesis
Authors
Wa Ode Kamillah , Wa Ode Siti PurnamasariDOI:
10.29303/jbt.v25i4.10240Published:
2025-10-13Issue:
Vol. 25 No. 4 (2025): in ProgressKeywords:
Alcohol acyltransferase, Acetyl-CoA docking, BAHD acyltransferase, fruit aroma.Articles
Downloads
How to Cite
Downloads
Abstract
Fruit aroma arises from volatile esters synthesized by alcohol acyltransferase (AAT) of the BAHD family. This study analyzes AATs from Citrus sinensis, Vitis vinifera, Malus domestica, and Fragaria × ananassa through sequence alignment, secondary structure prediction, 3D modeling, and docking with acetyl-CoA. Secondary structure prediction shows conserved α-helices and β-sheets forming the characteristic α/β fold, with loops providing interspecies variation. all AATs retain the HXXXD motif and DFGWG/NFGWG variants with ~450 residues. Docking reveals a consistent acetyl-CoA orientation but species-specific interactions: polar/charged residues (Arg, Ser, His, Gln/Asn) form hydrogen and electrostatic bonds, whereas aromatic/aliphatic residues (Phe, Ile, Met) provide hydrophobic stabilization. Malus domestica exhibits the strongest polar network (6 H-bonds; ≈ −7.8 kcal·mol⁻¹), whereas Citrus sinensis relies more on hydrophobic contacts (≈ −6.9 kcal·mol⁻¹). These findings indicate that a conserved structural framework preserves the core catalytic mechanism of AATs while species-specific active-site microarchitecture modulates substrate affinity and selectivity, likely contributing to differences in fruit volatile ester profiles and offering candidate residues for targeted functional validation and aroma improvement.
References
Aharoni, A., Giri, A. P., Deuerlein, S., Griepink, F., de Kogel, W.-J., Verstappen, F. W. A., Verhoeven, H. A., Jongsma, M. A., Schwab, W., & Bouwmeester, H. J. (2003). Terpenoid metabolism in wild-type and transgenic Arabidopsis plants. The Plant Cell, 15(12), 2866-2884. DOI: https://doi.org/10.1105/tpc.016253.
Baldwin, E. A., Bai, J., Plotto, A., & Dea, S. (2011). Electronic noses and tongues: Applications for the food and pharmaceutical industries. Sensors, 11(5), 4744-4766. DOI: https://doi.org/10.3390/s110504744.
Beekwilder, J., Alvarez-Huerta, M., Neef, E., Verstappen, F. W. A., Bouwmeester, H. J., & Aharoni, A. (2004). Functional characterization of enzymes forming volatile esters from strawberry and banana. Plant Physiology, 135, 1865-1878. DOI: https://doi.org/10.1104/pp.104.04258.
Chen, D., Oezguen, N., Urvil, P., Ferguson, C., Dann, S. M., & Savidge, T. C. (2016). Regulation of protein-ligand binding affinity by hydrogen bond pairing. Science Advances, 2(3), e1501240. DOI: https://doi.org/10.1126/sciadv.1501240.
Chen, X., Zhang, Y., Tang, W., Zhang, G., Wang, Y., & Yan, Z. (2024). Genetic variation, polyploidy, and hybridization influencing the aroma profiles of Rosaceae family. Genes, 15(10), 1-7. DOI: https://doi.org/10.3390/genes15101339.
D’Auria, J. C. (2006). Acyltransferases in plants: a good time to be BAHD. Current Opinion Plant Biology, 9(3), 331–340. DOI: https://doi.org/10.1016/j.pbi.2006.03.016.
Dare, A. P., Wu, C., Carvajal, J. I., Nguyen, H. M., Günther, C. S., Hamiaux, C., Bailey, S., Deng, C., Mengist, M. F., Iorizzo, M., Foster, T. M., Chagné, D., Montanari, S., & Espley, R. V. (2025). Haplotyped genome mapping and functional characterization of a blueberry anthocyanin acetyltransferase (AAT) controlling the accumulation of acylated anthocyanins. Journal of Experimental Botany, 76(6), 1607–1624. DOI: https://doi.org/10.1093/jxb/erae489.
Dudareva, N., Klempien A., Muhlemann, J. K., & Kaplan, I. (2013). Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytologist, 198(1), 16–32. DOI: https://doi.org/10.1111/nph.12145.
Dunemann, F., Ulrich, D., Malysheva-Otto, L., Weber, W. E., Longhi, S., Velasco, R., & Costa, F. (2012). Functional allelic diversity of the apple alcohol acyl-transferase gene MdAAT1 associated with fruit ester volatile contents in apple cultivar. Molecular Breeding, 29(3), 609–625. DOI: https://doi.org/10.1007/s11032-011-9577-7.
Eduardo, I., Chietera, G., Pirona, R., Pacheco, I., Troggio, M., Banchi, E., Bassi, D., Rossini, L., Vecchietti, A., & Pozzi, C. (2013). Genetic dissection of aroma volatile compounds from the essential oil of peach fruit: QTL analysis and identification of candidate genes using dense SNP maps. Tree Genetics & Genomes, 9(1), 189–204. DOI: https://doi.org/10.1007/s11295-012-0546-z.
El Hadi, M. A. M., Zhang, F.-J., Wu, F.-F., Zhou, C.-H., & Tao, J. (2013). Advances in fruit aroma volatile research. Molecules, 18(7), 8200-8229. DOI: https://doi.org/10.3390/molecules18078200.
Goff, S. A., & Klee, H. J. (2006). Plant volatile compounds: Sensory cues for health and nutritional value? Science, 311(5762), 815-819. DOI: https://doi.org/10.1126/science.1112614.
Klee, H. J., & Tieman, D. M. (2018). The genetics of fruit flavour preferences. Nature Reviws Genetics, 19(6), 347–356. DOI: https://doi.org/10.1038/s41576-018-0002-5.
Liu, G., Huang, L., & Lian J. (2023). Alcohol acyltransferases for the biosynthesis of esters. Biotechnology Biofuels and Bioproducts, 16(1), 1-16. DOI: https://doi.org/10.1186/s13068-023-02343-x
Liu, D., Du, Y., Abdiriyim, A., Zhang, L., Song, D., Deng, H., Wen, X., Zhang, Y., & Sun, B. (2025). Molecular functional mechanisms of two alcohol acetyltransferases in Lavandula x intermedia (lavandin). Frontiers in Chemistry, 13, 1-11. DOI: https://doi.org/10.3389/fchem.2025.1627286.
Ma, X., Koepke, J., Panjikar, S., Fritzsch, G., & Stöckigt, J. (2005). Crystal structure of vinorine synthase, the first representative of the BAHD superfamily. Journal of Biological Chemistry, 280(14), 13576-13583. DOI: https://doi.org/10.1074/jbc.M414508200.
Mauliana, L., Jamil, A. S., & Siti, S. (2022). Curcuma longa as a natural immunomodulator for preventing infection from COVID-19 with an in silico approach. Jurnal Biologi Tropis, 22(2), 345–352. DOI: https://doi.org/10.29303/jbt.v22i2.3281.
Morales-Quintana, L., Moya-León, M. A., & Herrera, R. (2015). Computational study enlightens the structural role of the alcohol acyltransferase DFGWG motif. Journal Molecular Modeling, 21(8), 1-10. DOI: https://doi.org/10.1007/s00894-015-2762-6.
Mwaniki, R. M., Veldman, W., Sanyanga, A., Chamboko, C. R., & Bishop, Ö. T. (2025). Decoding allosteric effects of missense variations in drug metabolism: Afrocentric CYP3A4 alleles explored. Journal of Molecular Biology, 437(20), 169160. DOI: https://doi.org/10.1016/j.jmb.2025.169160.
Saez, D., Rodríguez-Arriaza, F., Urra, G., Fabi, J. P., Hormazábal-Abarza, F., Méndez-Yáñez, A., Castro, E., Bustos, D., Ramos, P., & Morales-Quintana, L. (2024). Unraveling the key step in the aroma puzzle: Insights into alcohol acyltransferases in strawberries. Plant Physiology and Biochemistry, 212, 108668. DOI: https://doi.org/10.1016/j.plaphy.2024.108668.
Schwab, W., Davidovich-Rikanati, R., & Lewinsohn, E. (2008). Biosynthesis of plant-derived flavor compounds. The Plant Journal, 54(4), 712–732. DOI: https://doi.org/10.1111/j.1365-313X.2008.03446.x.
Schwieterman, M. L., Colquhoun, T. A., Jaworski, E. A., Bartoshuk, L. M., Gilbert, J. L., Tieman, D. M., Odabasi, A. Z., Moskowitz, H. R., Folta, K. M., Klee, H. J., Sims, C. A., Whitaker, V. M., & Clark, D. G. (2014). Strawberry flavor: Diverse chemical compositions, a seasonal influence, and effects on sensory perception. PLOS ONE, 9(2), e88446. DOI: https://doi.org/10.1371/journal.pone.0088446.
Sebastiani, F., Baroni, C., Patil, G., Dali, A., Becucci, M., Hofbauer, S., & Smulevich, G. (2023). The role of the hydrogen bond network in maintaining heme pocket stability and protein function specificity of C. diphtheriae coproheme decarboxylase. Biomolecules, 13(2). DOI: https://doi.org/10.3390/biom1302023.
Shojaee, F. M., Kazemian, M., Kolahi, M., Nosrati, H., & Kazemi, E. M. (2025). The role of volatile compounds and genes involved in ester biosynthesis during strawberry fruit (Fragaria × ananassa Duchesne) development. Acta Agriculturae Slovenica, 121(1), 1–11. DOI: https://doi.org/10.14720/aas.2025.121.2.18538.
Song, Z.-Z., Peng, B., Gu, Z.-X., Tang, M.-L., Li, B., Liang, M.-X., Wang, L.-M., Guo, X.-T., Wang, J.-P., Sha, Y.-F., & Zhang, H.-X. (2021). Site-directed mutagenesis identified the key active site residues of alcohol acyltransferase PpAAT1 responsible for aroma biosynthesis in peach fruits. Horticulture Research, 8(32). DOI: https://doi.org/10.1038/s41438-021-00461-x.
Souleyre, E. J. F., Nieuwenhuizen, N. J., Wang, M. Y., Winz, R. A., Matich, A. J., Ileperuma, N. R., Tang, H., Baldwin, S. J., Wang, T., List, B. W., Hoeata, K. A., Popowski, E. A., & Atkinson, R. G. (2022). Alcohol acyl transferase genes at a high-flavor intensity locus contribute to ester biosynthesis in kiwifruit. Plant Physiology., 190(2), 1100–1116. DOI: https://doi.org/10.1093/plphys/kiac31.
Tang, Y., Yao, Y., Wu, Y., & Yang, S. (2025). The volatile composition, biosynthesis pathways, breeding strategies, and regulation measures of apple aroma: A review. Horticulturae, 11(3), 310. DOI: https://doi.org/10.3390/horticulturae11030310.
Tuominen, L. K., Johnson, V. E., & Tsai, C. J. (2011). Differential phylogenetic expansions in BAHD acyltransferases across five angiosperm taxa and evidence of divergent expression among Populus paralogues. BMC Genomics, 12(1), 236. DOI: https://doi.org/10.1186/1471-2164-12-236.
Veldman, W., & Tastan Bishop, Ö. (2025). Residue variations in human N-acetyltransferase 2 enzyme alleles: From rapid to slow acetylation. ACS Omega, 10(30), 33045–33062. DOI: https://doi.org/10.1021/acsomega.5c02316.
Wang, J., Guo, X., Wu, Z., Wang, D., Guo, P., Han, Y., Jiang, H., & Lü, Z. (2025). Integration of volatile and non-volatile metabolites and the transcriptome reveals the formation mechanisms of differential aroma compounds between Pyrus communis and Pyrus pyrifolia cultivars. Frontiers in Plant Science, 16, 1559012. DOI: https://doi.org/10.3389/fpls.2025.1559012.
Xu, D., Wang, Z., Zhuang, W., Wang, T., & Xie, Y. (2023). Family characteristics, phylogenetic reconstruction, and potential applications of the plant BAHD acyltransferase family. Frontiers in Plant Science, 14, 1218914. DOI: https://doi.org/10.3389/fpls.2023.1218914
License
Copyright (c) 2025 Wa Ode Kamillah, Wa Ode Siti Purnamasari

This work is licensed under a Creative Commons Attribution 4.0 International License.
Jurnal Biologi Tropis is licensed under a Creative Commons Attribution 4.0 International License.
The copyright of the received article shall be assigned to the author as the owner of the paper. The intended copyright includes the right to publish the article in various forms (including reprints). The journal maintains the publishing rights to the published articles.
Authors are permitted to disseminate published articles by sharing the link/DOI of the article at the journal. Authors are allowed to use their articles for any legal purposes deemed necessary without written permission from the journal with an acknowledgment of initial publication to this journal.