Forest Biomass Modeling Based on Landsat-8 Spectral Indices Using Google Earth Engine
Authors
Agung Yoga Pangestu , Septian Faris Al Amin , Nurika Arum Sari , Mhd Muhajir HasibuanDOI:
10.29303/jbt.v25i4.10266Published:
2025-10-29Issue:
Vol. 25 No. 4 (2025): in ProgressKeywords:
Aboveground biomass, google earth engine, landsat, vegetation index.Articles
Downloads
How to Cite
Downloads
Abstract
Estimating forest biomass is essential for sustainable forest management and carbon monitoring. This study aimed to develop an aboveground biomass (AGB) estimation model by integrating multispectral Landsat-8 OLI imagery and field measurements in a 95.76 ha rehabilitation area near Rindam II Sriwijaya, Muara Enim, South Sumatra. Field data were collected using the National Forest Inventory Protocol, recording tree diameter and height to calculate AGB through species-specific allometric equations. Several vegetation indices (NDVI, EVI, SAVI, MSAVI, RVI, TVI, NDWI) were derived and analyzed on the Google Earth Engine (GEE) platform to identify the most responsive spectral indicator for biomass estimation.The analysis showed that AGB and carbon stocks varied across the rehabilitation site, reflecting differences in stand structure and vegetation moisture. Among all tested indices, NDWI demonstrated the highest correlation with AGB, indicating its effectiveness in capturing canopy water content and biomass variation under humid, mixed-vegetation conditions. These results emphasize the potential of GEE-based vegetation indices as a cost-efficient and replicable approach for monitoring biomass in tropical rehabilitation forests. NDWI proved to be the most suitable index for modeling forest biomass, offering a practical reference for applying similar remote sensing methods in other tropical regions to support large-scale forest carbon assessments
References
Basuki, T. M., Nugroho, H. Y. S. H., Indrajaya, Y., Pramono, I. B., Nugroho, N. P., Supangat, A. B., Indrawati, D. R., Savitri, E., Wahyuningrum, N., Purwanto, Cahyono, S. A., Putra, P. B., Adi, R. N., Nugroho, A. W., Auliyani, D., Wuryanta, A., Riyanto, H. D., Harjadi, B., Yudilastyantoro, C., … Simarmata, D. P. (2022). Improvement of Integrated Watershed Management in Indonesia for Mitigation and Adaptation to Climate Change: A Review. In Sustainability (Switzerland) (Vol. 14, Issue 16). MDPI. https://doi.org/10.3390/su14169997
Cattanio, J. H. (2017). Leaf area index and root biomass variation at different secondary forest ages in the eastern Amazon. In Forest Ecology and Management (Vol. 400, pp. 1–11). Elsevier B.V. https://doi.org/10.1016/j.foreco.2017.05.033
Floor, F., Jordan, C. F., Jordan1, C. F., Rico, P., Center, N., & Piedras, R. (1969). Derivation of Leaf-Area Index from Quality of Light on the Derivation of Leaf-Area Iindex from Quality of Light on The Forest Floor. Source: Ecology, 50(4), 663–666.
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031
Huete, A. R. (1988a). A Soil-Adjusted Vegetation Index (SAVI) 295. In REMOTE SENSING OF ENVIRONMENT (Vol. 25).
Huete, A. R. (1988b). A Soil-Adjusted Vegetation Index (SAVI) 295. Remote Sensing of Environment, 25, 295–309.
Imran, A. B., & Ahmed, S. (2018). International Journal of Human Capital in Urban Management Potential of Landsat-8 spectral indices to estimate forest biomass ARTICLE INFO. Int. J. Hum. Capital Urban Manage, 3(4), 303–314. https://doi.org/10.22034/IJHCUM.2018.04.04
Ma, T., Zhang, C., Ji, L., Zuo, Z., Beckline, M., Hu, Y., Li, X., & Xiao, X. (2024). Development of forest aboveground biomass estimation, its problems and future solutions: A review. In Ecological Indicators (Vol. 159). Elsevier B.V. https://doi.org/10.1016/j.ecolind.2024.111653
Machado, H. A., Mallmann, A. A., Engel, K., Favarin, J. A. S., Modesto, J. L. C., Sanquetta, C. R., Dalla Corte, A. P., Koehler, H. S., Péllico Netto, S., Behling, A., & Trautenmüller, J. W. (2025). Aboveground biomass and carbon stocks in subtropical forests. Ecological Indicators, 172. https://doi.org/10.1016/j.ecolind.2025.113294
McFeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425–1432. https://doi.org/10.1080/01431169608948714
Melnyk, O., & Brunn, A. (2025). Analysis of Spectral Index Interrelationships for Vegetation Condition Assessment on the Example of Wetlands in Volyn Polissya, Ukraine. Earth (Switzerland), 6(2). https://doi.org/10.3390/earth6020028
Nugroho, N. P. (2014). Relatioship Between Total Tree Height and Diameter at Breast Height for Tropical Peat Swamp Forest Tree Species in Rokan Hilir Distric, Riau Province. Indonesian Journal of Forestry Research, 1, 89–107.
Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., Phillips, O. L., Shvidenko, A., Lewis, S. L., Canadell, J. G., Ciais, P., Jackson, R. B., Pacala, S. W., McGuire, A. D., Piao, S., Rautiainen, A., Sitch, S., & Hayes, D. (2011). A large and persistent carbon sink in the world’s forests. Science, 333(6045), 988–993. https://doi.org/10.1126/science.1201609
Qi, J., Chehbouni, A., Huete, A. R., Kerr, Y. H., & Sorooshian, S. (1994). A Modified Soil Adjusted Vegetation Index. 48, 119–126.
Rouse, R. W. H., Haas, J. A. W., & Deering, D. W. (1973). Monitoring Vegetation Systems in The Great Plains with ERTS.
Shifley, S. R., Huffman, A., Knapp, B. O., & Stelzer, H. (2024). Carbon and Biomass Dynamics in Missouri Forests and Implications for Climate Change.
Sidhu, N., Pebesma, E., & Câmara, G. (2018). Using Google Earth Engine to detect land cover change: Singapore as a use case. European Journal of Remote Sensing, 51(1), 486–500. https://doi.org/10.1080/22797254.2018.1451782
Singha, C., Chandra Swain, K., Sahoo, S., M. Fadhil Al-Quraishi, A., Omeiza Alao, J., Almohamad, H., Fatahalla Mohamed Ahmed, M., & Ghassan Abdo, H. (2025). Predicting forest above-ground biomass using SAR imagery and GEDI data through machine learning in GEE cloud. Forest Science and Technology, 21(2), 187–206. https://doi.org/10.1080/21580103.2025.2481122
Wai, P., Su, H., & Li, M. (2022). Estimating Aboveground Biomass of Two Different Forest Types in Myanmar from Sentinel‐2 Data with Machine Learning and Geostatistical Algorithms. Remote Sensing, 14(9). https://doi.org/10.3390/rs14092146
Zhang, Y., Zhao, B., Yang, W., Sui, L., Yang, G., Wei, Z., Yang, C., Du, H., Qu, P., & Yu, S. (2025). Optimization of remote sensing estimation model for biomass of rubber plantations from the perspective of multi-source feature fusion. Trees, Forests and People, 21. https://doi.org/10.1016/j.tfp.2025.100969
License
Copyright (c) 2025 Agung Yoga Pangestu, Septian Faris Al Amin, Nurika Arum Sari, Mhd Muhajir Hasibuan

This work is licensed under a Creative Commons Attribution 4.0 International License.

Jurnal Biologi Tropis is licensed under a Creative Commons Attribution 4.0 International License.
The copyright of the received article shall be assigned to the author as the owner of the paper. The intended copyright includes the right to publish the article in various forms (including reprints). The journal maintains the publishing rights to the published articles.
Authors are permitted to disseminate published articles by sharing the link/DOI of the article at the journal. Authors are allowed to use their articles for any legal purposes deemed necessary without written permission from the journal with an acknowledgment of initial publication to this journal.
 
						 
							























