The Effect of Nanocurcumin Size Inhibitory Effect on Klebsiella pneumoniae and Staphylococcus aureus Bacteria
Authors
Raffael Griffin Frarie Suak , Donn Richard Ricky , Joshua Hamonangan Lumban TobingDOI:
10.29303/jbt.v25i4a.10776Published:
2025-12-03Issue:
Vol. 25 No. 4a (2025): Special IssueKeywords:
Antibacterial, Klebsiella pneumoniae, Nanocurcumin, PVP K30, Particle size , Staphylococcus aureusArticles
Downloads
How to Cite
Downloads
Abstract
Bacterial infections such by Staphylococcus aureus and Klebsiella pneumoniae remain a major health challenge due to the increasing problem of antibiotic resistance. Curcumin has shown antibacterial potential; however, its poor solubility and low bioavailability limit its effectiveness. This study aimed to analyze the effect of varying PVP K30 concentrations on the particle size of nanocurcumin and its inhibitory activity against both bacteria. A true experimental design with a posttest-only control group was employed using three concentrations of PVP K30: 1.5 g/mL, 3.0 g/mL, and 4.5 g/mL. Particle size was measured using a Particle Size Analyzer (PSA), while antibacterial activity was evaluated through the disk diffusion method on Mueller-Hinton Agar (MHA). The results showed that increasing PVP K30 concentration reduced particle size, with mean diameters of 132.2 nm, 295.2 nm, and 20.6 nm, respectively. The inhibition zones by S. aureus ranged from 1.82–3.6 mm (weak), while those by K. pneumoniae ranged from 1,08–8,98 mm (weak to moderate). ANOVA analysis indicated no significant effect on S. aureus (p= 0.099 > α= 0.05), but a significant effect on K. pneumoniae (p= 0.000 < α= 0.05). These findings suggest that nanoparticle size plays an essential role in enhancing the antibacterial activity of nanocurcumin, particularly against Gram-negative bacteria.
References
Adahoun, M. A. A., Al-Akhras, M. A. H., Jaafar, M. S., & Bououdina, M. (2017). Enhanced Anti-cancer and Antimicrobial Activities of Curcumin Nanoparticles. Artificial cells, nanomedicine, and biotechnology, 45(1), 98-107. https://doi.org/10.3109/21691401.2015.1129628
Almeida, L., & Parra, D. (2024). Soluble polymer-curcumin encapsulation to protect against gamma irradiation and increase the water solubility. Brazilian Journal of Radiation Sciences, 12(4A (Suppl.)), e2598-e2598. https://doi.org/10.15392/2319-0612.2024.2598
Arbi, T. A., Afrina, A., & Guntara, D. J. (2021). Konsentrasi Hambat dan Bunuh Minimum Formula Hidrogel Ekstrak Daun Tin (Ficus carica) Terhadap Pertumbuhan Staphylococcus aureus. Cakradonya Dental Journal, 13(1), 22-31. file:///C:/Users/limlo/Downloads/20915-65238-1-SM.pdf
Assoni, L., Girardello, R., Converso, T. R., & Darrieux, M. (2021). Current Stage in the Development of Klebsiella pneumoniae vaccines. Infectious diseases and therapy, 10(4), 2157-2175. https://doi.org/10.1007/s40121-021-00533-4
Cavalcanti, V. P., Camargo, L. A. D., Moura, F. S., Melo Fernandes, E. J. D., Lamaro-Cardoso, J., Braga, C. A. D. S. B., & André, M. C. P. (2019). Staphylococcus Aureus in Tonsils of Patients with Recurrent Tonsillitis: Prevalence, Susceptibility Profile, and Genotypic characterization. Brazilian Journal of Infectious Diseases, 23, 8-14. https://doi.org/10.1016/j.bjid.2018.12.003
Davis, W. W., & Stout, T. R. (1971). Disc Plate Method of Microbiological Antibiotic Assay: I. Factors influencing variability and error. Applied microbiology, 22(4), 659-665. https://doi.org/10.1128/am.22.4.659-665.1971
Faria, T. M. R., da Silva, A. B. M. F., Morais, A. L. F., & de Oliveira, J. R. (2023). Bacterial Resistance: A Narrative Review on Staphylococcus aureus, Klebsiella pneumoniae and Pseudomonas aeruginosa. Research, Society and Development, 12(11), e25121143640-e25121143640. https://doi.org/10.33448/rsd-v12i11.43640
Flora, M., Perrotta, F., Nicolai, A., Maffucci, R., Pratillo, A., Mollica, M., & Calabrese, C. (2019). Staphylococcus Aureus in Chronic Airway Diseases: An overview. Respiratory Medicine, 155, 66-71. https://doi.org/10.1016/j.rmed.2019.07.008
Franco, P., & De Marco, I. (2020). The Use of Poly (N-vinyl pyrrolidone) in the Delivery of Drugs: A Review. Polymers, 12(5), 1114. https://doi.org/10.3390/polym12051114
Górski, M., Niedźwiadek, J., & Magryś, A. (2022). Antibacterial Activity of Curcumin a Natural Phenylpropanoid Dimer from the Rhizomes of Curcuma longa L. and its Synergy with Antibiotics. Annals of Agricultural and Environmental Medicine, 29(3), 394-400. https://doi.org/10.26444/aaem/148393
Hettiarachchi, S. S., Perera, Y., Dunuweera, S. P., Dunuweera, A. N., Rajapakse, S., & Rajapakse, R. M. G. (2022). Comparison of Antibacterial Activity of Nanocurcumin with Bulk Curcumin. ACS omega, 7(50), 46494-46500. https://doi.org/10.1021/acsomega.2c05293
Klagisa, R., Kroica, J., & Kise, L. (2021). S. aureus and K. pneumoniae on the Surface and within Core of Tonsils in Adults with Recurrent Tonsillitis. Medicina, 57(10), 1002. https://doi.org/10.3390/medicina57101002
Koczkur, K. M., Mourdikoudis, S., Polavarapu, L., & Skrabalak, S. E. (2015). Polyvinylpyrrolidone (PVP) in Nanoparticle Synthesis. Dalton transactions, 44(41), 17883-17905. https://doi.org/10.1039/C5DT02964C
Laux, C., Peschel, A., & Krismer, B. (2019). Staphylococcus aureus Colonization of the Human Nose and Interaction with other Microbiome Members. Microbiology Spectrum, 7(2), 10-1128. https://doi.org/10.1128/microbiolspec.gpp3-0029-2018
Lima, E. P., Gonçalves, O. H., Ames, F. Q., Castro-Hoshino, L. V., Leimann, F. V., Cuman, R. K., ... & Bersani-Amado, C. A. (2021). Anti-inflammatory and Antioxidant Activity of Nanoencapsulated Curcuminoids Extracted from Curcuma longa L. in a Model of Cutaneous Inflammation. Inflammation, 44, 604-616. https://doi.org/10.1007/s10753-020-01360-4
Manuaba, I. A. S. P., Iswari, I. S., & Pinatih, K. J. P. (2021). Prevalensi bakteri Escherichia coli dan Klebsiella pneumoniae Penghasil Extended Spectrum Beta Lactamase (ESBL) yang Diisolasi dari Pasien Pneumonia di RSUP Sanglah periode tahun 2019-2020. Jurnal Medika Udayana, 10(12), 51-57. https://doi.org/10.24843/MU.2021.V10.i12.P10
Naghavi, M., Vollset, S. E., Ikuta, K. S., Swetschinski, L. R., Gray, A. P., Wool, E. E., ... & Dekker, D. M. (2024). Global Burden of Bacterial Antimicrobial Resistance 1990–2021: A Systematic analysis with Forecasts to 2050. The Lancet, 404(10459), 1199-1226. https://doi.org/10.1016/ S0140-6736(24)01867-1
Nuryah, A., Yuniarti, N., & Puspitasari, I. (2019). Prevalensi dan Evaluasi Kesesuaian Penggunaan Antibiotik pada Pasien dengan Infeksi Methicillin Resistant Staphylococcus Aureus di RSUP Dr. Soeradji Tirtonegoro Klaten. Majalah Farmaseutik, 15(2), 123-129. https://doi.org/10.22146/farmaseutik.v15i2.47911
Putri, C. I., Wardhana, M. F., Andrifianie, F., & Iqbal, M. (2023). Literature Review: Kejadian Resistensi pada Penggunaan Antibiotik. Medical Profession Journal of Lampung, 13(3), 219-225. https://doi.org/10.53089/medula.v13i3.629
Putri, N. R. E., Ulfah, A. A., & Kusumastuti, Y. (2019). Synthesis of Curcumin Nanoparticle from Curcuma xanthorrhiza Roxb Extract by Solvent-Antisolvent Precipitation Method. Jurnal Rekayasa Proses, 13(2), 145-150. https://doi.org/10.22146/jrekpros.50909
Rohde, M. (2019). The Gram-positive Bacterial Cell Wall. Microbiology spectrum, 7(3), 10-1128. https://doi.org/10.1128/microbiolspec.gpp3-0044-2018
Safari, D., Harimurti, K., Khoeri, M. M., Waslia, L., Mudaliana, S., A’yun, H. Q., Angeline, R. & Subekti, D. (2015). Staphylococcus aureus and Streptococcus pneumoniae Prevalence among Elderly Adults in Jakarta, Indonesia. Southeast Asian J Trop Med Public Health, 46(3), 465-471. https://pubmed.ncbi.nlm.nih.gov/26521520/
Safo, I. A., Werheid, M., Dosche, C., & Oezaslan, M. J. N. A. (2019). The Role of Polyvinylpyrrolidone (PVP) as a Capping and Ctructure-directing Agent in the Formation of Pt Nanocubes. Nanoscale Advances, 1(8), 3095-3106. https://doi.org/10.1039/C9NA00186G
Sánchez, A., Mejía, S. P., & Orozco, J. (2020). Recent Advances in Polymeric Nanoparticle-Encapsulated Drugs against Intracellular Infections. Molecules, 25(16), 3760. https://doi.org/10.3390/molecules25163760
Sujono, H., Rizal, S., Purbaya, S., & Jasmansyah, J. (2019). Antibacterial Activity of the Essential Oil from Betel leaf (Piper betle L.) against Streptococcus pyogenes and Staphylococcus aureus. Jurnal Kartika Kimia, 2(1), 30-36. https://doi.org/10.26874/jkk.v2i1.27
Utami, T. M., Wulandari, W. T., & Tuslinah, L. (2022). Karakteristik Nanopartikel Kurkumin dengan Penambahan Eudragit Menggunakan Metode Gelasi Ionik. In Prosiding Seminar Nasional Diseminasi Hasil Penelitian Program Studi S1 Farmasi (Vol. 2, No. 1). https://repository.universitas-bth.ac.id/id/eprint/2410
World Health Organization (2024). WHO Updates list of Drug-resistant bacteria most Threatening to Human Health. Retrieved July 22, 2025, from https://www.who.int/news/item/17-05-2024-who-updates-list-of-drug-resistant-bacteria-most-threatening-to-human-health
Zheng, D., Huang, C., Huang, H., Zhao, Y., Khan, M. R. U., Zhao, H., & Huang, L. (2020). Antibacterial Mechanism of Curcumin: a Review. Chemistry & biodiversity, 17(8), e2000171. https://doi.org/10.1002/cbdv.202000171
License
Copyright (c) 2025 Raffael Griffin Frarie Suak, Donn Richard Ricky, Joshua Hamonangan Lumban Tobing

This work is licensed under a Creative Commons Attribution 4.0 International License.

Jurnal Biologi Tropis is licensed under a Creative Commons Attribution 4.0 International License.
The copyright of the received article shall be assigned to the author as the owner of the paper. The intended copyright includes the right to publish the article in various forms (including reprints). The journal maintains the publishing rights to the published articles.
Authors are permitted to disseminate published articles by sharing the link/DOI of the article at the journal. Authors are allowed to use their articles for any legal purposes deemed necessary without written permission from the journal with an acknowledgment of initial publication to this journal.
























