Comparison of Total Chromium (Cr) Levels in Blood Samples of Conventional Cigarettes and Electric Cigarettes Users
Authors
Andita Ainal Rizki , Mastuti Widi LestariDOI:
10.29303/jbt.v25i4b.11126Published:
2025-12-30Issue:
Vol. 25 No. 4b (2025): Special IssueKeywords:
Blood, Chromium, Conventional cigarettes, E-cigarettesArticles
Downloads
How to Cite
Downloads
Abstract
The extensive levels of heavy metals in the environment constitute a significant toxicity hazard to humans. Cigarettes contain heavy metal ions. Cigarettes that are generally consumed by the public are conventional cigarettes and e-cigarettes. In conventional cigarettes, heavy metals come from tobacco, while in e-cigarettes they come from the constituent components and liquids. One of the metal ions found in the two cigarettes is Chromium (Cr). Normal blood Cr levels are below 1.4 μg/L. The purpose of this study is to determine the difference Cr levels in the blood of conventional cigarette users and e-cigarettes. This study used a cross-sectional approach on 11 blood samples of conventional cigarette users and 11 blood samples of e-cigarette users. The level Cr was tested using an Atomic Absorption Spectroscopy (AAS) method. The results of the Cr level obtained by the Mann Whitney non-parametric test obtained a significant value of 0.005 (p < 0.05) which shows that there is a significant difference in Cr levels between the blood of conventional cigarette users and e-cigarettes.
References
Aherrera, A., Olmedo, P., Grau-Perez, M., Tanda, S., Goessler, W., Jarmul, S., Chen, R., Cohen, J. E., Rule, A. M., & Navas-Acien, A. (2017). The association of e-cigarette use with exposure to nickel and chromium: a preliminary study of non-invasive biomarkers. Environmental research, 159, 313-320. study of non-invasive biomarkers. Environ. Res. 2017, 159, 313–320. https://doi.org/10.1016/j.envres.2017.08.014
Ahmed, N. I., Modwawe, G. A., & Abdrabo, A. A. A. (2015). Levels of cobalt and chromium in cigarette smokers, Khartoum State. Scholars Academic Journal of Biosciences, 3(4), 397–400. https://doi.org/10.36347/sajb.2015.v03i04.014
Badea, M., Luzardo, O. P., González-Antuña, A., Zumbado, M., Rogozea, L., Floroian, L., Alexandrescu, D., Moga, M., Gaman, L., Radoi, M., Boada, L. D., & Henríquez-Hernández, L. A. (2018). Body burden of toxic metals and rare earth elements in non-smokers, cigarette smokers and electronic cigarette users. Environmental research, 166, 269-275. https://doi.org/10.1016/j.envres.2018.06.007
Bernhard, D., Rossmann, A., & Wick, G. (2005). Metals in cigarette smoke. IUBMB Life, 57(12), 805–809. https://doi.org/10.1080/15216540500459667
Caruso, R. V., O’Connor, R. J., Stephens, W. E., Cummings, K. M., & Fong, G. T. (2014). Toxic metal concentrations in cigarettes obtained from US smokers in 2009: results from the International Tobacco Control (ITC) United States survey cohort. International journal of environmental research and public health, 11(1), 202-217. https://doi.org/10.3390/ijerph110100202
Centers for Disease Control and Prevention. (2020). Fourth national report on human exposure to environmental chemicals (Updated tables). U.S. Department of Health and Human Services.
Farsalinos, K. E., Voudris, V., & Poulas, K. (2015). Are metals emitted from electronic cigarettes a reason for health concern? A risk-assessment analysis of currently available literature. International journal of environmental research and public health, 12(5), 5215-5232. https://doi.org/10.3390/ijerph120505215
Felix, A. T., & Ntarisa, A. V. (2024). Review of toxic metals in tobacco cigarette brands and risk assessment. Journal of King Saud University-Science, 36(10), 103484. https://doi.org/10.1016/j.jksus.2024.103484.
Fuoco, F. C., Buonanno, G., Stabile, L., & Vigo, P. (2014). Influential parameters on particle concentration and size distribution in the mainstream of e-cigarettes. Environmental pollution, 184, 523-529. https://doi.org/10.1016/j.envpol.2013.10.010
Genchi, G., Sinicropi, M. S., Lauria, G., Carocci, A., & Catalano, A. (2020). The effects of cadmium toxicity. International journal of environmental research and public health, 17(11), 3782. https://doi.org/10.3390/ijerph17113782
Gong, J. Y., Ghosh, M., & Hoet, P. H. (2023). Association between metal exposure from e-cigarette components and toxicity endpoints: A literature review. Regulatory Toxicology and Pharmacology, 144, 105488. https://doi.org/10.1016/j.yrtph.2023.105488
Hossain, M. T., Hassi, U., & Huq, S. I. (2018). Assessment of concentration and toxicological (Cancer) risk of lead, cadmium and chromium in tobacco products commonly available in Bangladesh. Toxicology reports, 5, 897. https://doi.org/10.1016/j.toxrep.2018.08.019
International Agency for Research on Cancer. (2009). A review of human carcinogens: Part C—Arsenic, metals, fibres, and dusts (IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Vol. 100C). World Health Organization.
Ilusanya, O. A. F., Olajumoke, O. I., Fogbonja, O. C., Egberongbe, H. O., Oyeyipo, F. M., & Yakubu, R. (2024). Molecular characterization of heavy metal tolerant bacteria from an agricultural soil. Al-Hayat: Journal of Biology and Applied Biology, 7(1), 45-56. https://doi.org/10.21580/ah.v7i1.20474
Lisboa, T. P., Mimura, A. M. S., da Silva, J. C. J., & de Sousa, R. A. (2020). Chromium levels in tobacco, filter and ash of illicit brands cigarettes marketed in Brazil. Journal of Analytical Toxicology, 44(5), 514-520. https://doi.org/10.1093/jat/bkz106
Milnerowicz, H., Ściskalska, M., & Dul, M. (2015). Pro-inflammatory effects of metals in persons and animals exposed to tobacco smoke. Journal of Trace Elements in Medicine and Biology, 29, 1-10. https://doi.org/10.1016/j.jtemb.2014.04.008
Mulder, H. A., et al. (2020). Characterization of e-cigarette coil temperature and toxic metal analysis by infrared temperature sensing and scanning electron microscopy–energy-dispersive X-ray. Inhalation Toxicology, 32(13–14), 447–455. https://doi.org/10.1080/08958378.2020.1840678
Muzyka, R., Chrubasik, M., Dudziak, M., Ouadi, M., & Sajdak, M. (2022). Pyrolysis of tobacco waste: a comparative study between Py-GC/MS and fixed-bed reactors. Journal of Analytical and Applied Pyrolysis, 167, 105702. https://doi.org/10.1016/j.jaap.2022.105702
Nursalam, N. I. D. N. (2016). Metodologi Penelitian Ilmu Keperawatan. Salimba Medika.
Omaiye, E. E., et al. (2021). Design features and elemental/metal analysis of the atomizers in pod-style electronic cigarettes. PLOS ONE, 16(3), e0248127. https://doi.org/10.1371/journal.pone.0248127
Özcan, M. M., Aljuhaimi, F., Uslu, N., Ghafoor, K., Mohamed Ahmed, I. A., & Babiker, E. E. (2019). Distribution of heavy metal and macroelements of Indian and imported cigarette brands in Turkey. Environmental Science and Pollution Research, 26(27), 28210-28215. https://doi.org/10.1007/s11356-019-05978-2
Pappas, R. S., Polzin, G. M., Zhang, L., Watson, C. H., Paschal, D. C., & Ashley, D. L. (2006). Cadmium, lead, and thallium in mainstream tobacco smoke particulate. Food and Chemical Toxicology, 44(5), 714-723. https://doi.org/10.1016/j.fct.2005.10.004
Prokopowicz, A., Sobczak, A., Szuła-Chraplewska, M., Ochota, P., & Kośmider, L. (2019). Exposure to cadmium and lead in cigarette smokers who switched to electronic cigarettes. Nicotine and Tobacco Research, 21(9), 1198-1205. https://doi.org/10.1093/ntr/nty161
Prokopowicz, A., Sobczak, A., Szdzuj, J., Grygoyć, K., & Kośmider, L. (2020). Metal concentration assessment in the urine of cigarette smokers who switched to electronic cigarettes: a pilot study. International Journal of Environmental Research and Public Health, 17(6), 1877. https://doi.org/10.3390/ijerph17061877
Rastian, B., Wilbur, C., & Curtis, D. B. (2022). Transfer of metals to the aerosol generated by an electronic cigarette: Influence of number of puffs and power. International Journal of Environmental Research and Public Health, 19(15), 9334. https://doi.org/10.3390/ijerph19159334
Reif, B. M., & Murray, B. P. (2024). Chromium Toxicity. In StatPearls. StatPearls Publishing.
Sandal, S., Verghese, P.S., Taneja, A. et al. Cigarettes as a source of heavy metal toxicity: evaluating human health risks. Discov Public Health 22, 311 (2025). https://doi.org/10.1186/s12982-025-00650-2
Sawicka, E., Jurkowska, K., & Piwowar, A. (2021). Chromium (III) and chromium (VI) as important players in the induction of genotoxicity – Current view. Annals of Agricultural and Environmental Medicine, 28(1), 1–10. https://doi.org/10.26444/aaem/118228
Singh, S., & Yadav, S. (2023). Quantitative analysis of heavy metals in cigarette tobacco: Health implications and risk assessment. Journal of Survey in Fisheries Sciences, 10(1), 16786–16793. https://doi.org/10.53555/sfs.v10i1.3035
Sógor, C., Gáspár, A., & Posta, J. (1998). Flame atomic absorption spectrometric determination of total chromium and Cr (VI) in cigarette ash and smoke using flow injection/hydraulic high-pressure sample introduction. Microchemical journal, 58(3), 251-255. https://doi.org/10.1006/mchj.1997.1552
Son, Y., Mainelis, G., Delnevo, C., Wackowski, O. A., Schwander, S., & Meng, Q. (2019). Investigating e-cigarette particle emissions and human airway depositions under various e-cigarette-use conditions. Chemical research in toxicology, 33(2), 343-352. https://doi.org/10.1021/acs.chemrestox.9b00243
Tian, Y., Hou, H., Zhu, F., Wang, A., Liu, Y., & Hu, Q. (2014). Simultaneous determination of chromium, cadmium, and lead and evaluation of the correlation between chromium and cotinine in Chinese smokers. Biological Trace Element Research, 158(1), 9–14. https://doi.org/10.1007/s12011-014-9905-y
Tripathi, S. M., & Chaurasia, S. (2020). Detection of Chromium in surface and groundwater and its bio-absorption using bio-wastes and vermiculite. Engineering Science and Technology, an International Journal, 23(5), 1153-1161. https://doi.org/10.1016/j.jestch.2019.12.002
UCSF Health. (2023). Chromium — Blood test. University of California San Francisco. Retrieved [tanggal kamu mengakses], from https://www.ucsfhealth.org/medical-tests/chromium---blood-tes
Widyantari, D. D. (2023). Dampak Penggunaan Rokok Elektrik (Vape) terhadap Risiko Penyakit Paru. Lombok Medical Journal, 2(1), 34-38. https://doi.org/10.29303/lmj.v2i1.2477
License
Copyright (c) 2025 Andita Ainal Rizki, Mastuti Widi Lestari

This work is licensed under a Creative Commons Attribution 4.0 International License.

Jurnal Biologi Tropis is licensed under a Creative Commons Attribution 4.0 International License.
The copyright of the received article shall be assigned to the author as the owner of the paper. The intended copyright includes the right to publish the article in various forms (including reprints). The journal maintains the publishing rights to the published articles.
Authors are permitted to disseminate published articles by sharing the link/DOI of the article at the journal. Authors are allowed to use their articles for any legal purposes deemed necessary without written permission from the journal with an acknowledgment of initial publication to this journal.
























