Growth and Yield Response of Rice (Oryza sativa L.) to Compound Copper and Zinc Micronutrient Fertilization
Authors
Sutan Tarmizi Lubis , Eka Tarwaca Susila Putra , Betha SilmiaDOI:
10.29303/jbt.v26i1.11147Published:
2026-01-16Issue:
Vol. 26 No. 1 (2026): Januari-MaretKeywords:
Copper, Micronutrient fertilizer, Relative agronomic effectiveness, Rice (Oryza sativa L.), ZincArticles
Downloads
How to Cite
Downloads
Abstract
This study evaluated a Zn–Cu compound micronutrient fertilizer on plant growth, yield components, grain yield, and fertilizer-use efficiency of Inpari 32 rice. A field experiment was conducted in an Inceptisol paddy field (1,100 m²) in Margokaton, Seyegan, Sleman, Yogyakarta, Indonesia (January–April 2025). Treatments were arranged in a non-factorial completely randomized design with eight fertilizer regimes and four replications, combining NPK with graded rates of Zn+Cu fertilizer. Pre- and post-planting soil nutrient analyses and post-harvest leaf tissue nutrient analyses were conducted, and vegetative traits, yield, Relative Agronomic Effectiveness (RAE), and fertilizer-use efficiency were evaluated. Soil Zn and Cu were initially very high and high, respectively, but remained below toxicity thresholds. Compared with regimes without Zn+Cu, Zn+Cu additions significantly increased plant height, tiller number, and milled dry grain yield. Treatments P2–P7 achieved RAE >100%, indicating greater agronomic effectiveness than the non-Zn+Cu regimes. The most effective dosage was P6 (1 dosage NPK + 1.5 dosage Zn+Cu).
References
Abdullah, A., Mustafa, A., Shahid, M. Q., Zaheer, M. S., Hassan, M. U., Ashraf, R., Siddiqui, M. H., Fahad, S., & Cheema, M. (2022). Zinc-coated urea improves the nitrogen use efficiency and grain yield of irrigated rice. Frontiers in Environmental Science, 10, 926939. https://doi.org/10.3389/fenvs.2022.926939
Aditya, J. P., Koesmaryono, Y., & Kholiq, M. A. (2021). Pengaruh perubahan curah hujan terhadap produktivitas padi sawah di Kalimantan Barat. Jurnal Ilmu Lingkungan, 19(2), 237–246.https://doi.org/10.14710/jil.19.2.237-246
Akram, M. A., Depar, N., & Irfan, M. (2019). Zinc application improves productivity and biofortification of mini core rice hybrids. Pakistan Journal of Agriculture, Agricultural Engineering and Veterinary Sciences, 35(2), 72–80. https://pjaevs.sau.edu.pk/index.php/ojs/article/view/320
Alloway, B. J. (2022). Micronutrients in crop production: An update on soil–plant interactions. Journal of Plant Nutrition and Soil Science, 185(2),145158.https://doi.org/10.1002/jpln.202100345
Baligar, V. C., Fageria, N. K., & He, Z. L. (2021). Nutrient use efficiency in plants: An overview. Communications in Soil Science and Plant Analysis, 52(6), 637–650. https://doi.org/10.1080/00103624.2020.1869748
Bana, R. C., Gupta, A. K., Bana, R. S., Shivay, Y. S., Bamboriya, S. D., Thakur, N. P., ... & Choudhary, A. K. (2021). Zinc-coated urea for enhanced zinc biofortification, nitrogen use efficiency and yield of basmati rice under typic fluvents. Sustainability, 14(1), 104. https://doi.org/10.3390/su14010167
Cakmak, I., White, P. J., & Marschner, H. (2020). Zinc in agriculture: Biofortification and productivity of cereal crops. Plant and Soil, 457(1), 3140.https://doi.org/10.1007/s11104-020-04630-2
Cheng, Y., Niu, H., & Yu, Q. (2023). Copper application in rice changes paddy soil microbial communities and enhances enzyme activities and plant growth. Journal of Plant Growth Regulation, 42(6), 3061–3070.https://doi.org/10.1007/s00344-022-10670-w
Dhaliwal, J. K., Prasad, R., Kaur, R., Kaur, J., Sharma, V., Gupta, J., Sharma, S., Etesami, H., & Singh, B. (2023). Impact of manures and fertilizers on yield, nutrient content in grain and soil properties under rice–wheat cropping system in semi-arid region. PLOS ONE, 18(11), e0292602. https://doi.org/10.1371/journal.pone.0292602
Eviati, Sulaeman, Purwakusuma, W., Hidayati, R., Pramono, A., & Yuniarti, A. (2023).Petunjuk teknis edisi 3: Analisis kimia tanah, tanaman, air, dan pupuk. Kementerian Pertanian Republik Indonesia.https://bbsdlp.litbang.pertanian.go.id/buku/petunjuk-teknis-analisis-kimia-tanah-tanaman-air-dan-pupuk-edisi-3
Food and Agriculture Organization of the United Nations. (2021).World food and agriculture – statistical yearbook 2021. FAO. https://www.fao.org/documents/card/en/c/cb4477en
Guo, Z., Zhang, J., Li, X., et al. (2016). Effects of nitrogen rate and zinc management on zinc efficiency in rice production: A case study in China. The Journal of Agricultural Science, 154(4), 584–597. https://doi.org/10.1017/S0021859615000441
Hamam, K. A., et al. (2017). Pengaruh pupuk ZnSO₄ dan varietas padi terhadap pertumbuhan serta serapan Zn pada lahan sawah. Jurnal Agronomi Indonesia, 43(3), 227–234. https://doi.org/10.24831/jai.v43i3.11125
Kabata-Pendias, A. (2021).Trace elements in soils and plants (5th ed.). CRC Press.
Kumar, V., et al. (2021). Copper bioavailability, uptake, toxicity and tolerance in plants: A comprehensive review. Chemosphere, 262, 127810. https://doi.org/10.1016/j.chemosphere.2020.127810
Lv, H. H., Ji, C. C., Zhang, L., Jiang, C. C., & Cai, H. M. (2022). Zinc application promotes nitrogen transformation in rice rhizosphere soil by modifying microbial communities and gene expression levels. Science of the Total Environment, 849, 157858. https://doi.org/10.1016/j.scitotenv.2022.157858
Montgomery, D. C. (2017).Design and analysis of experiments (9th ed.). Wiley.
Nahumarury, E. M., et al. (2025). Evaluasi pemberian pupuk mikro majemuk seng dan tembaga terhadap pertumbuhan vegetatif dan produksi padi sawah (Oryza sativa L.). Jurnal Ecosolum, 14(2), 131–140. https://doi.org/10.20956/ecosolum.v14i2.32407
Noulas, C., Tziouvalekas, M., & Karyotis, T. (2018). Zinc in soils, water and food crops. Journal of Trace Elements in Medicine and Biology, 49, 252–260. https://doi.org/10.1016/j.jtemb.2018.06.001
Panda, D., & Barik, J. (2021). Flooding tolerance in rice: Focus on mechanisms and crop improvement. Rice Science, 28(1), 43–57. https://doi.org/10.1016/j.rsci.2020.11.005
Peramaiyan, P., Craufurd, P., Kumar, V., Seelan, L. P., McDonald, A. J., Balwinder-Singh, Kishore, A., & Singh, S. (2022). Agronomic biofortification of zinc in rice for diminishing malnutrition in South Asia. Sustainability, 14(13), 7747. https://doi.org/10.3390/su14137747
Rahman, N., & Schoenau, J. (2022). Zinc and copper interactions under variable soil phosphorus and moisture conditions in selected Saskatchewan soils. Journal of Plant Nutrition, 45(3), 311–331. https://doi.org/10.1080/01904167.2021.1952223
Rob, A. K., et al. (2024). Role of copper in rice (Oryza sativa L.) production: A review. Journal of Plant Physiology, 302, 154314. https://doi.org/10.1016/j.jplph.2024.154314
Shukla, A. K., Behera, S. K., Majumdar, K., & Rao, C. S. (2022). Micronutrient fertilization for improving crop productivity and quality in India. Agronomy, 12(3), 654. https://doi.org/10.3390/agronomy12030654
Supriatin, S., & Salam, A. K. (2024). Total and extractable micronutrients of tropical acid soils of Lampung, Indonesia. Communications in Soil Science and Plant Analysis, 55(19), 2529–2544. https://doi.org/10.1080/00103624.2024.2367250
Susanti, W. I., Cholidah, S. N., & Agus, F. (2024). Improving zinc and copper management to support sustainable rice cultivation in Indonesia. Sustainability, 16(2), 845. https://doi.org/10.3390/su16020845
Zhen, S., Shuai, H., Xu, C., Lv, G., Zhu, X., Zhang, Q., Zhu, Q., Núñez-Delgado, A., Conde-Cid, M., Zhou, Y., & Huang, D. (2021). Foliar application of Zn reduces Cd accumulation in grains of late rice by regulating the antioxidant system, enhancing Cd chelation onto cell wall of leaves, and inhibiting Cd translocation in rice. Science of the Total Environment, 770, 145302. https://doi.org/10.1016/j.scitotenv.2021.145302
License
Copyright (c) 2026 Sutan Tarmizi Lubis, Eka Tarwaca Susila Putra, Betha Silmia

This work is licensed under a Creative Commons Attribution 4.0 International License.

Jurnal Biologi Tropis is licensed under a Creative Commons Attribution 4.0 International License.
The copyright of the received article shall be assigned to the author as the owner of the paper. The intended copyright includes the right to publish the article in various forms (including reprints). The journal maintains the publishing rights to the published articles.
Authors are permitted to disseminate published articles by sharing the link/DOI of the article at the journal. Authors are allowed to use their articles for any legal purposes deemed necessary without written permission from the journal with an acknowledgment of initial publication to this journal.
























