Metabolite profiling of agarwood (Gyrinops versteegii (Gilg.) Domke) leaves from difference growth locations using Thin Layer Chromatography
Authors
Dwi Indriani Manurung , Lisna Hidayati , Nastiti Wijayanti , Tri Rini NuringtyasDOI:
10.29303/jbt.v21i2.2710Published:
2021-09-12Issue:
Vol. 21 No. 2 (2021): Mei - AgustusKeywords:
Agarwood, Gyrinops versteegii, secondary metabolites, TLC, Phytochemical screening.Articles
Downloads
How to Cite
Downloads
Metrics
Abstract
Gyrinops versteegii (Gilg) Domke is an agarwood-producing plant originating from Eastern Indonesia. Leaves have antioxidant and anticancer activity due to their secondary metabolites. However, secondary metabolites are strongly influenced by the environment. This study aims to compare the terpenoid, phenolic, and flavonoid profiles of agarwood leaves grown in three locations, namely Bogor, Mataram, and Sambas using Thin Layer Chromatography (TLC), in order to obtain the most potential agarwood G. versteegii for further development as herbal medicine. Agarwood leaf powder was extracted using Soxhlet with 80% methanol as solvent, followed by liquid-liquid fractionation using chloroform and aquadest. The crude extract and the obtained fraction were subjected to metabolite profiling using TLC. Racing data factors from TLC were analyzed using hierarchical cluster analysis (HCA). The results showed that the Mataram sample produced higher yields for both extracts and fractions. TLC detected that the chloroform fraction contained more terpenoids, followed by phenolics and flavonoids, while the aqueous fraction contained the same number of positive bands for terpenoids and phenolics. In terms of origin, the Bogor sample showed six terpenoid positive bands higher than the other samples. A similar pattern was observed in the phenolics, while the flavonoids were the same for all samples. HCA resulted in Mataram being clustered separately from the Bogor and Sambas samples. Agarwood leaves from Mataram cannot be used to replace agarwood leaves from Bogor and Sambas as herbal ingredients.
References
Abdullahi R., Abubakar, & Hague, M. (2017). Methodology Used in the Study. Asian Journal of Pharmaceutical and Clinical Research, 7(10), 1ââ¬â5. https://doi.org/10.4103/jpbs.JPBS
Ashraf, M. A., Iqbal, M., Rasheed, R., Hussain, I., Riaz, M., & Arif, M. S. (2018). Environmental Stress and Secondary Metabolites in Plants: An Overview. In Plant Metabolites and Regulation under Environmental Stress (Issue June 2019). https://doi.org/10.1016/B978-0-12-812689-9.00008-X
Austen, N., Walker, H. J., Lake, J. A., Phoenix, G. K., & Cameron, D. D. (2019). The Regulation of Plant Secondary Metabolism in Response to Abiotic Stress: Interactions Between Heat Shock and Elevated CO2. Frontiers in Plant Science, 10(November), 1ââ¬â12. https://doi.org/10.3389/fpls.2019.01463
BPS (2021). Rata-Rata Suhu Udara, Kelembaban, Tekanan Udara, Kecepatan Angin, Curah Hujan, dan Penyinaran Matahari. Menurut Stasiun Cuaca di Indonesia 2016 - 2019. https://www.bps.go.id/statictable/2019/02/08/1959/jumlah-curah-hujan-dan-jumlah-hari-hujan-di-stasiun-pengamatan-bmkg-2011-2015.html. Accessed on Thursday, april 8 th 2021 at 23:01 WIB (2021).
BPS (2021). Letak Geografis, Titik Kordinat Garis Lintang. Menurut Stasiun Geografis Indonesia 2015. https://kaltim.bps.go.id/statictable/2015/03/03/2/letak-batas-dan-luas-provinsi-kabupaten html. Accessed on Thursday, april 8 th 2021 at 23:01 WIB (2021).
Cai, L. (2014). Thin layer chromatography. Current Protocols in Essential Laboratory Techniques, 2014(February 2014), 6.3.1-6.3.18. https://doi.org/10.1002/9780470089941.et0603s08
Das, K., Tiwari, R. K. S., & Shrivastava, D. K. (2010). Techniques for evaluation of medicinal plant products as antimicrobial agent: Current methods and future trends. Journal of Medicinal Plants Research, 4(2), 104ââ¬â111. https://doi.org/10.5897/JMPR09.030
Ibrahim, M. H., Jaafar, H. Z. E., Karimi, E., & Ghasemzadeh, A. (2012). Primary, secondary metabolites, photosynthetic capacity and antioxidant activity of the Malaysian Herb Kacip Fatimah (Labisia pumila Benth) exposed to potassium fertilization under greenhouse conditions. International Journal of Molecular Sciences, 13(11), 15321ââ¬â15342. https://doi.org/10.3390/ijms131115321
Kraus, E., Voeten, M., & Lambers, H. (2002). Allelopathic and autotoxic interactions in selected populations of Lolium perenne grown in monoculture and mixed culture. Functional Plant Biology, 29(12), 1465ââ¬â1473. https://doi.org/10.1071/FP02063.
LIPI (2015) ââ¬â Indonesia. Indonesia Miliki 7.500 Tanaman Obat. http://lipi.go.id/berita/single/Indonesia-Miliki-7500-Tanaman-Obat/11540. Diakses tanggal 18 Desember 2019.
Maylani Haniva. (2020). STANDARDISASI SEDIAAN EKSTRAK DAUN GAHARU Aquilaria malaccensis Lamk. DARI LOKASI TUMBUH BERBEDA DI INDONESIA. Skripsi.
Mulyaningsih, T., Marsono, D., & Yamada, I. (2014). Selection of Superior Breeding Infraspecies Gaharu of. 4(January), 485ââ¬â492.
Norita, A. (2020). Standarisasi Sediaan Ekstrak Daun Gaharu (Gyrinops versteegii (Gilg.) Domke) dari Tiga Lokasi Berbeda di Indonesia. Skripsi.
Novriyanti, E., Santosa, E., Syafii, W., Turjaman, M., & Sitepu, I. R. (2010). Anti Fungal Activity of Wood Extract of Aquilaria crassna Pierre ex Lecomte Against Agarwood-Inducing Fungi, Fusarium solani. Indonesian Journal of Forestry Research, 7(2), 155ââ¬â165. https://doi.org/10.20886/ijfr.2010.7.2.155-165
Nuringtyas, T. R., Isromarina, R., Septia, Y., Hidayati, L., Wijayanti, N., & Moeljopawiro, S. (2018). The antioxidant and cytotoxic activities of the chloroform extract of agarwood (Gyrinops versteegii (Gilg.) Domke) leaves on HeLa cell lines. AIP Conference Proceedings, 2002(2018). https://doi.org/10.1063/1.5050163
Ramakrishna, A., & Ravishankar, G. A. (2011). Influence of abiotic stress signals on secondary metabolites in plants. Plant Signaling and Behavior, 6(11), 1720ââ¬â1731. https://doi.org/10.4161/psb.6.11.17613
Rindyastuti, R., Yulistyarini, T., & Darmayanti, A. S. (2019). Population and ecological study of agarwood producing tree (Gyrinops versteegii) in Manggarai district, Flores island, Indonesia. Biodiversitas, 20(4), 1180ââ¬â1191. https://doi.org/10.13057/biodiv/d200434
Sampaio, B. L., Edrada-ebel, R., Batista, F., & Costa, D. (2016). Effect of the environment on the secondary metabolic profile of Tithonia diversifolia : a model for environmental metabolomics of plants. Nature Publishing Group, July, 1ââ¬â11. https://doi.org/10.1038/srep29265
Sastrohamidjojo,H., 2002, Kromatografi, Edisi Kedua, 26-32, Penerbit Liberty Yogyakarta, Yogyakarta.Singh, S., Kaur, I., & Kariyat, R. (2021). The multifunctional roles of polyphenols in plant-herbivore interactions. International Journal of Molecular Sciences, 22(3), 1ââ¬â19. https://doi.org/10.3390/ijms22031442
Sumarni, W., Sudarmin, S., & Sumarti, S. S. (2019). The scientification of jamu: A study of Indonesianââ¬â¢s traditional medicine. Journal of Physics: Conference Series, 1321(3). https://doi.org/10.1088/1742-6596/1321/3/032057
Susilo, A. (2014). Panduan Lapangan Pengenalan Jenis Pohon Penghasil Gaharu Gyrinops spp . di Indonesia.
Tiwari, P., Kumar, B., Kaur, M., Kaur, G., & Kaur, H. (2011). Phytochemical screening and Extraction: A Review. Internationale Pharmaceutica Sciencia| Jan-March 2011 | Vol. 1 | Issue 1, 1(1). https://doi.org/10.1002/hep.29375
Wahyuni, R., Prihantini, A. I., & Anggadhania, L. (2020). Formation of Gyrinops versteegii Agarwood by Fusarium solani Bioinduction with Simpori Technique. Jurnal Ilmu Pertanian Indonesia, 25(1), 152ââ¬â159. https://doi.org/10.18343/jipi.25.1.152
Wardana, T. A. P., Nuringtyas, T. R., Wijayanti, N., & Hidayati, L. (2019). Phytochemical analysis of agarwood (Gyrinops versteegii (Gilg.) Domke) leaves extracts as anticancer using GC-MS. AIP Conference Proceedings, 2194(December). https://doi.org/10.1063/1.5139868
Widayat. (2019). Pengaruh perbedaan Lokasi tumbuh TERHADAP PROFIL METABOLIT DAUN GAHARU Gyrinops versteegii ( Gilg .) Domke. Skripsi.
Widayat, T., Hidayati, L., Wijayanti, N., & Nuringtyas, T. R. (2021). Metabolite Profiles of Agarwood Gyrinops versteegii ( Gilg ) Domke Leaves collected from Different Locations. 16(4), 12ââ¬â19.
Wolfertz, M., Sharkey, T. D., Boland, W., & Kühnemann, F. (2004). Rapid regulation of the methylerythritol 4-phosphate pathway during isoprene synthesis. Plant Physiology, 135(4), 1939ââ¬â1945. https://doi.org/10.1104/pp.104.043737
License
Jurnal Biologi Tropis is licensed under a Creative Commons Attribution 4.0 International License.
The copyright of the received article shall be assigned to the author as the owner of the paper. The intended copyright includes the right to publish the article in various forms (including reprints). The journal maintains the publishing rights to the published articles.
Authors are permitted to disseminate published articles by sharing the link/DOI of the article at the journal. Authors are allowed to use their articles for any legal purposes deemed necessary without written permission from the journal with an acknowledgment of initial publication to this journal.