Can Landuse Intensification Decrease Soil Carbon Stock in Upstream Sumber Brantas Watershed?
Authors
Anita Dwy Fitria , Syahrul KurniawanDOI:
10.29303/jbt.v23i3.4979Published:
2023-05-23Issue:
Vol. 23 No. 3 (2023): July - SeptemberKeywords:
bulk density, carbon stock, landuse intensification, soil quality.Articles
Downloads
How to Cite
Downloads
Metrics
Abstract
Upper Brantas watershed with volcanic ash soil has potentially high carbon stock. However, land-use intensification in the upstream watershed area is the potential deterioration of soil quality, mainly degradation. The study aimed to assess the effect of land-use intensification in the upper Sumberbrantas watershed on soil carbon stock. The study was conducted in the upper Sumber brantas watershed, particularly in Kali kungkuk micro watershed, Batu City, East Java – Indonesia. Soil samples were taken at 0-30 cm and 30-100 cm on 4 land uses (i.e., forest, agroforestry, cropland, and shrubland) with three replications. The variable measured include basal area, standing litter mass, soil bulk density, and soil organic C. The results showed that land-use intensification strongly impacted soil carbon stock at 0-30 cm and 30-100 cm depth of soil. The soil carbon stock degradation of around 60% to 67% in the intensive cropping systems and in the post-cropping cultivation was covered by a shrub as compared to the forest soil, especially at a depth of 0–30 cm. The correlation value (p<0.05) between the basal area (0.65) and standing litter mass (0.42) on soil carbon stock, especially at a depth of 0-30 cm, indicated that the basal area and standing litter mass increase soil carbon stock. The result was in line with the soil bulk density by ANOVA test at a depth of 0-30 cm and 30-100 cm showing the effect (p<0.05) where intensive land use consisting of treeless (i.e., cropland and shrubland) increases the soil bulk density.
References
Abbas, F., Hammad, H.M., Ishaq, W., Farooque, A.A., Bakhat, H.F., Zia, Z., Fahad, S., Farhad, W. & Cerdà, A., (2020). A review of soil carbon dynamics resulting from agricultural practices. , 268, p.110319. DOI: https://doi.org/10.1016/j.jenvman.2020.110319
Allen, K., Corre, M.D., Kurniawan, S., Utami, S.R. & Veldkamp, E. (2016). Spatial variability surpasses land-use change effects on soil biochemical properties of converted lowland landscapes in Sumatra, Indonesia. Geoderma, 284: 42–50. DOI: https://doi.org/10.1016/j.geoderma.2016.08.010
Arif, Ahmad (2021). Masyarakat Adat dan Kedaulatan Pangan. Kepustaan Populer Gramedia: pp. 1-2.
Bahrami, A., Emadodin, I., Ranjbar Atashi, M. & Rudolf Bork, H. (2010). Land-use change and soil degradation: A case study, North of Iran. Agriculture and Biology Journal of North America, 1(4), pp.600-605. http://scihub.org/ABJNA/PDF/2010/4/1-4-600-605.pdf
Celik, I. (2005). Land use effects on organic matter and physical properties of soil in southern Mediterranean highland of Turkey. Soil Tillage Res, 83: 270–277. DOI: https://doi.org/10.1016/j.still.2004.08.001
Chapin IIIFS, Matson PA & Vitousek P. (2011). Principles of terrestrial ecosystem ecology (Berlin: Springer Science). 2:529. DOI: https://doi.org/10.1007/978-1-4419-9504-9
Dechert, G., Veldkamp, E. & Anas, I. (2004). Is soil degradation unrelated to deforestation? Examining soil parameters of land use systems in upland Central Sulawesi, Indonesia. Plant and Soil, 265, pp.197-209. DOI: https://doi.org/10.1007/s11104-005-0885-8
Ellert, B.H., & Bettany, J.R., (1995). Calculation of organic matter and nutrients stored in soils under contrasting management regimes. Can. J. Soil Sci, 75: 529–538. DOI: https://doi.org/10.4141/cjss95-075
Fitria, A.D. & Kurniawan, S. (2021). Land-use changes and slope positions impact on the degradation of soil functions in nutrient stock within the Kalikungkuk micro watershed, East Java, Indonesia. Journal of Degraded and Mining Lands Management, 8(2), pp.2689-2702. DOI: 10.15243/jdmlm.2021.082.2689
Fontaine, S., Barot, S., Barré, P., Bdioui, N., Mary, B. & Rumpel, C. (2007). Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature, 450(7167), pp.277-280. DOI: https://doi.org/10.1038/nature06275
Gogoi, A., Ahirwal, J. & Sahoo, U.K., (2022). Evaluation of ecosystem carbon storage in major forest types of Eastern Himalaya: Implications for carbon sink management. Journal of Environmental Management, 302, p.113972. DOI: https://doi.org/10.1016/j.jenvman.2021.113972
Gross & Robert (2019). The Case for Digging Deeper: Soil Organic Carbon Storage, Dynamics, and Controls in Our Changing World. 3(2): 28. DOI: https://doi.org/10.3390/soilsystems3020028
Harbo, L.S., Olesen, J.E., Liang, Z., Christensen, B.T. & Elsgaard, L., (2022). Estimating organic carbon stocks of mineral soils in Denmark: Impact of bulk density and content of rock fragments. Geoderma Regional, 30, p.e00560. DOI: https://doi.org/10.1016/j.geodrs.2022.e00560
Jose, S. & Bardhan, S. (2012). Agroforestry for biomass production and carbon sequestration: an overview. Agroforestry Systems, 86(2), pp.105-111. DOI: https://doi.org/10.1007/s10457-012-9573-x
Kowalska, A., Grobelak, A., Almås, Å.R. & Singh, B.R. (2020). Effect of biowastes on soil remediation, plant productivity and soil organic carbon sequestration: A review. Energies, 13(21), p.5813. DOI: https://doi.org/10.3390/en13215813
Kurniawan, S., Agustina, M.P., Wiwaha, R.A., Wijaya, A.Y. & Fitria, A.D. (2021). Soil quality degradation under horticulture practices in volcanic slope soil, East Java–Indonesia. In IOP Conference Series: Earth and Environmental Science (Vol. 648, No. 1, p. 012062). IOP Publishing. DOI: 10.1088/1755-1315/648/1/012062
Kurniawan, S., Utami, S.R., Mukharomah, M., Navarette, I.A. & Prasetya, B. (2019). Land use systems, soil texture, control carbon and nitrogen storages in the forest soil of ub forest, Indonesia. AGRIVITA, Journal of Agricultural Science, 41(3), pp.416-427. DOI: http://doi.org/10.17503/agrivita.v41i3.2236
Lal, R., (2005). Forest soils and carbon sequestration. Forest ecology and management, 220(1-3), pp.242-258. DOI: https://doi.org/10.1016/j.foreco.2005.08.015
Lasco Rd, & Suson Pd. (1999). A Leucaena leucocephala-based indigenous fallow system in Central Philippines: the Naalad System. Intl Tree Crops J 10: 161-174. DOI: https://doi.org/10.1080/01435698.1999.9753002
Lasco, R.D., Visco, R.G. & Pulhin, J.M. (2001). Secondary forests in the Philippines: formation and transformation in the 20th century. Journal of Tropical Forest Science, 13(4): pp.652-670. https://www.jstor.org/stable/43582365
Lorenz, K., Lal, R. & Ehlers, K., (2019). Soil organic carbon stock as an indicator for monitoring land and soil degradation in relation to U nited N ations' S ustainable D evelopment G oals. Land Degradation & Development, 30(7), pp.824-838. DOI: https://doi.org/10.1002/ldr.3270
Marty, C., Houle, D., Gagnon, C., & Courchesne, F. (2017). The relationships of soil total nitrogen concentrations, pools and C: N ratios with climate, vegetation types and nitrate deposition in temperate and boreal forests of eastern Canada. Catena, 152: pp.163-172. DOI: https://doi.org/10.1016/j.catena.2017.01.014
Matthews, E.; Payne, R.; Rohweder, M. & Murray, S. (2000). Forest ecosystem: Carbon stoarage sequestration. Carbon Sequestration in Soil, Global Climate Change Digest, 12 (2). URL: http://www.wri.org/publication/pilot-analysis-global-ecosystems-forest-ecosystems
Mayer, M., Prescott, C.E., Abaker, W.E., Augusto, L., Cécillon, L., Ferreira, G.W., James, J., Jandl, R., Katzensteiner, K., Laclau, J.P. & Laganière, J. (2020). Tamm Review: Influence of forest management activities on soil organic carbon stocks: A knowledge synthesis. Forest Ecology and Management, 466, p.118127. DOI: https://doi.org/10.1016/j.foreco.2020.118127
Melillo, JM, Frey, SD, Deangelis, KM, Werner, WJ, Bernard, MJ, Bowles, FP, Pold, G., Knorr, MA, & Grandy, AS. (2017). Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science. Sains 358 (6359), 101–105. DOI: https://doi.org/10.1126/science.aan2874
Milne E, Banwart S A, Noellemeyer E, Abson D J, Ballabio C, Bampa F, Bationo A, Batjes N H, Bernoux M, Bhattacharyya T, …. & Black H. (2015). Soil carbon, multiple benefits. Environmental Development, 13: pp. 33-38. DOI: https://doi.org/10.1016/j.envdev.2014.11.005
Mongabay (2019). Berita Lingkungan: Lahan Terdegradasi di Sumber Brantas: https://www.mongabay.co.id/tag/kementerian-lingkungan-hidup-dan-kehutanan/
Nair, P.R., Nair, V.D., Kumar, B.M. & Showalter, J.M. (2010). Carbon sequestration in agroforestry systems. Advances in agronomy, 108, pp.237-307. DOI: https://doi.org/10.1016/S0065-2113(10)08005-3
Paoli, G. D., Curran, L. M., & Slik, J. W. F. (2008). Soil nutrients affect spatial patterns of aboveground biomass and emergent tree density in southwestern Borneo. Oecologia, 155(2): 287-299. DOI: https://doi.org/10.1007/s00442-007-0906-9
Robinson, D.A., Thomas, A., Reinsch, S., Lebron, I., Feeney, C.J., Maskell, L.C., Wood, C.M., Seaton, F.M., Emmett, B.A. … & Cosby, B.J. (2022). Analytical modelling of soil porosity and bulk density across the soil organic matter and land-use continuum. Scientific reports, 12(1), pp.1-13. DOI: https://doi.org/10.1038/s41598-022-11099-7
Rüegg, S.R., Buttigieg, S.C., Goutard, F.L., Binot, A., Morand, S., Thys, S. & Keune, H. eds. (2019). Integrated approaches to health: concepts and experiences in framing, integration and evaluation of one health and EcoHealth. Frontiers Media SA. p.7. DOI: 10.3389/fvets.2019.00155
Schmidt, M.W.I.; Torn, M.S.; Abiven, S.; Dittmar, T.; Guggenberger, G.; Janssens, I.A.; Kleber, M.;
Kögel-Knabner, I.; Lehmann, J. … & Manning, D.A.C. (2011). Persistence of soil organic matter as an ecosystem property. Nature, 478, 49–56. DOI: https://doi.org/10.1038/nature10386
Sokol, N.W, Sanderman, J., & Bradford, M.A. (2018). Pathways of mineral-associated soil organic matter formation: Integrating the role of plant carbon source, chemistry, and point of entry. Glob. Chang. Biol. 12–24. DOI: https://doi.org/10.1111/gcb.14482
Zomer, R.J., Bossio, D.A., Sommer, R. & Verchot, L.V. (2017). Global sequestration potential of increased organic carbon in cropland soils. Scientific Reports, 7(1), pp.1-8. DOI: 10.1038/s41598-017-15794-8
License
Copyright (c) 2023 Anita Dwy Fitria, Syahrul Kurniawan
This work is licensed under a Creative Commons Attribution 4.0 International License.
Jurnal Biologi Tropis is licensed under a Creative Commons Attribution 4.0 International License.
The copyright of the received article shall be assigned to the author as the owner of the paper. The intended copyright includes the right to publish the article in various forms (including reprints). The journal maintains the publishing rights to the published articles.
Authors are permitted to disseminate published articles by sharing the link/DOI of the article at the journal. Authors are allowed to use their articles for any legal purposes deemed necessary without written permission from the journal with an acknowledgment of initial publication to this journal.