Marine Organisms with Anti-Amyloid Effect Through Their Role as BACE1 Inhibitors for Preventive Effort in Alzheimer’s Disease: A Literature Review
Authors
Made Raditya Arhya Putra , Legis Ocktaviana Saputri , Teguh Budi Wicaksono , Kadek Nandita Nugraha , Ajeng Ayu Putri , Rika Kamila Salsabila , Puspa Zalika FideliaDOI:
10.29303/jbt.v24i4.7546Published:
2024-10-30Issue:
Vol. 24 No. 4 (2024): Oktober - DesemberKeywords:
Alzheimer’s Disease (AD), anti-amyloid, BACE1 Inhibitor, IC50, marine organism.Articles
Downloads
How to Cite
Downloads
Metrics
Abstract
Alzheimer’s Disease (AD) is a gradually worsening neurodegenerative condition characterized by the build-up of beta-amyloid proteins, resulting in a decline in cognitive abilities. β-site amyloid precursor protein cleaving enzyme-1 (BACE1) is known to play a role in the formation of beta-amyloid plaques. Thus, theoretically, inhibiting BACE1 can potentially prevent and slow down the accumulation of these plaques. This study is a literature review that compiles data from various research examining the inhibitory effects of compounds from marine organisms on the BACE1 enzyme. A comprehensive analysis was conducted on the available literature to evaluate the potential of these compounds. 19 marine organisms and 40 compounds were identified with low IC50 values, five compounds with notably low IC50 values were identified: (1) 8,8’-Bieckol [1.62 µM] from Ecklonia cava, (2) Phlorofucofuroeckol A [2.13 µM] and (3a) Dieckol [2.21 µM] from Eisenia bicyclis, (4) bis-(2,3,6-tribromo-4,5-dihydroxybenzyl) ether [2.32 µM] from Symphyocladia latiuscula, (3b) another Dieckol [2.34 µM] also from Ecklonia cava and (5) Heparan sulfate [2.89 µM] from Portunus pelagicus. These findings underscore the therapeutic potential of marine compounds as BACE1 inhibitors for AD. However, further research is needed to explore their bioavailability and clinical efficacy for practical application in preventing and treating Alzheimer’s Disease.
References
Abbasov, M. E., Alvariño, R., Chaheine, C. M., Alonso, E., Sánchez, J. A., Conner, M. L., Alfonso, A., Jaspars, M., Botana, L. M., & Romo, D. (2019). Simplified immunosuppressive and neuroprotective agents based on gracilin A. Nature Chemistry, 11(4), 342–350. https://doi.org/10.1038/s41557-019-0230-0
Adlard, P. A., & Bush, A. I. (2018). Metals and Alzheimer’s Disease: How Far Have We Come in the Clinic? Journal of Alzheimer’s Disease, 62(3), 1369–1379. https://doi.org/10.3233/JAD-170662
Ahn, B. R., Moon, H. E., Kim, H. R., Jung, H. A., & Choi, J. S. (2012). Neuroprotective effect of edible brown alga Eisenia bicyclis on amyloid beta peptide-induced toxicity in PC12 cells. Archives of Pharmacal Research, 35(11), 1989–1998. https://doi.org/10.1007/s12272-012-1116-5
Bazzari, F. H., & Bazzari, A. H. (2022). BACE1 Inhibitors for Alzheimer’s Disease: The Past, Present and Any Future? Molecules, 27(24), Article 24. https://doi.org/10.3390/molecules27248823
Bekdash, R. A. (2021). The Cholinergic System, the Adrenergic System and the Neuropathology of Alzheimer’s Disease. International Journal of Molecular Sciences, 22(3), Article 3. https://doi.org/10.3390/ijms22031273
Bermejo-Pareja, F., & del Ser, T. (2024). Controversial Past, Splendid Present, Unpredictable Future: A Brief Review of Alzheimer Disease History. Journal of Clinical Medicine, 13(2), Article 2. https://doi.org/10.3390/jcm13020536
Breijyeh, Z., & Karaman, R. (2020). Comprehensive Review on Alzheimer’s Disease: Causes and Treatment. Molecules, 25(24), Article 24. https://doi.org/10.3390/molecules25245789
Cai, H., Wang, Y., McCarthy, D., Wen, H., Borchelt, D. R., Price, D. L., & Wong, P. C. (2001). BACE1 is the major β-secretase for generation of Aβ peptides by neurons. Nature Neuroscience, 4(3), 233–234. https://doi.org/10.1038/85064
Catanesi, M., Caioni, G., Castelli, V., Benedetti, E., d’Angelo, M., & Cimini, A. (2021). Benefits under the Sea: The Role of Marine Compounds in Neurodegenerative Disorders. Marine Drugs, 19(1), Article 1. https://doi.org/10.3390/md19010024
Chakraborty, B., Mukerjee, N., Maitra, S., Zehravi, M., Mukherjee, D., Ghosh, A., Massoud, E. E. S., & Rahman, Md. H. (2022). Therapeutic Potential of Different Natural Products for the Treatment of Alzheimer’s Disease. Oxidative Medicine and Cellular Longevity, 2022(1), 6873874. https://doi.org/10.1155/2022/6873874
Chen, L.-L., Fan, Y.-G., Zhao, L.-X., Zhang, Q., & Wang, Z.-Y. (2023). The metal ion hypothesis of Alzheimer’s disease and the anti-neuroinflammatory effect of metal chelators. Bioorganic Chemistry, 131, 106301. https://doi.org/10.1016/j.bioorg.2022.106301
Chen, X., Drew, J., Berney, W., & Lei, W. (2021). Neuroprotective Natural Products for Alzheimer’s Disease. Cells, 10(6), Article 6. https://doi.org/10.3390/cells10061309
Chen, Z.-R., Huang, J.-B., Yang, S.-L., & Hong, F.-F. (2022). Role of Cholinergic Signaling in Alzheimer’s Disease. Molecules, 27(6), Article 6. https://doi.org/10.3390/molecules27061816
Cheong, S. L., Tiew, J. K., Fong, Y. H., Leong, H. W., Chan, Y. M., Chan, Z. L., & Kong, E. W. J. (2022). Current Pharmacotherapy and Multi-Target Approaches for Alzheimer’s Disease. Pharmaceuticals, 15(12), Article 12. https://doi.org/10.3390/ph15121560
Choi, J. Y., Jang, J. S., Son, D. J., Im, H.-S., Kim, J. Y., Park, J. E., Choi, W. R., Han, S.-B., & Hong, J. T. (2017). Antarctic Krill Oil Diet Protects against Lipopolysaccharide-Induced Oxidative Stress, Neuroinflammation and Cognitive Impairment. International Journal of Molecular Sciences, 18(12), Article 12. https://doi.org/10.3390/ijms18122554
Dai, J., Sorribas, A., Yoshida, W. Y., Kelly, M., & Williams, P. G. (2010). Xestosaprols from the Indonesian Marine Sponge Xestospongia sp. Journal of Natural Products, 73(6), 1188–1191. https://doi.org/10.1021/np100203x
Dai, R., Sun, Y., Su, R., & Gao, H. (2022). Anti-Alzheimer’s disease potential of traditional chinese medicinal herbs as inhibitors of BACE1 and AChE enzymes. Biomedicine & Pharmacotherapy, 154, 113576. https://doi.org/10.1016/j.biopha.2022.113576
Das, B., & Yan, R. (2019). A Close Look at BACE1 Inhibitors for Alzheimer’s Disease Treatment. CNS Drugs, 33(3), 251–263. https://doi.org/10.1007/s40263-019-00613-7
Folch, J., Ettcheto, M., Petrov, D., Abad, S., Pedrós, I., Marin, M., Olloquequi, J., & Camins, A. (2018). Review of the advances in treatment for Alzheimer disease: Strategies for combating β-amyloid protein. Neurología (English Edition), 33(1), 47–58. https://doi.org/10.1016/j.nrleng.2015.03.019
García-Morales, V., González-Acedo, A., Melguizo-Rodríguez, L., Pardo-Moreno, T., Costela-Ruiz, V. J., Montiel-Troya, M., & Ramos-Rodríguez, J. J. (2021). Current Understanding of the Physiopathology, Diagnosis and Therapeutic Approach to Alzheimer’s Disease. Biomedicines, 9(12), Article 12. https://doi.org/10.3390/biomedicines9121910
Guo, T., Zhang, D., Zeng, Y., Huang, T. Y., Xu, H., & Zhao, Y. (2020). Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer’s disease. Molecular Neurodegeneration, 15(1), 40. https://doi.org/10.1186/s13024-020-00391-7
Hafez Ghoran, S., & Kijjoa, A. (2021). Marine-Derived Compounds with Anti-Alzheimer’s Disease Activities. Marine Drugs, 19(8), Article 8. https://doi.org/10.3390/md19080410
Hannan, M. A., Dash, R., Haque, M. N., Mohibbullah, M., Sohag, A. A. M., Rahman, M. A., Uddin, M. J., Alam, M., & Moon, I. S. (2020). Neuroprotective Potentials of Marine Algae and Their Bioactive Metabolites: Pharmacological Insights and Therapeutic Advances. Marine Drugs, 18(7), Article 7. https://doi.org/10.3390/md18070347
Huang, J. (2023). Alzheimer Disease. MSD Manual Professional Edition. https://www.msdmanuals.com/professional/neurologic-disorders/delirium-and-dementia/alzheimer-disease
Huang, L.-K., Kuan, Y.-C., Lin, H.-W., & Hu, C.-J. (2023). Clinical trials of new drugs for Alzheimer disease: A 2020–2023 update. Journal of Biomedical Science, 30(1), 83. https://doi.org/10.1186/s12929-023-00976-6
Jung, H. A., Ali, M. Y., Choi, R. J., Jeong, H. O., Chung, H. Y., & Choi, J. S. (2016). Kinetics and molecular docking studies of fucosterol and fucoxanthin, BACE1 inhibitors from brown algae Undaria pinnatifida and Ecklonia stolonifera. Food and Chemical Toxicology, 89, 104–111. https://doi.org/10.1016/j.fct.2016.01.014
Jung, H. A., Oh, S. H., & Choi, J. S. (2010). Molecular docking studies of phlorotannins from Eisenia bicyclis with BACE1 inhibitory activity. Bioorganic & Medicinal Chemistry Letters, 20(11), 3211–3215. https://doi.org/10.1016/j.bmcl.2010.04.093
KEMKES, D. (2023). Mengenal Demensia Alzheimer. https://yankes.kemkes.go.id/view_artikel/2819/mengenal-demensia-alzheimer
Klose, J., Griehl, C., Roßner, S., & Schilling, S. (2022). Natural Products from Plants and Algae for Treatment of Alzheimer’s Disease: A Review. Biomolecules, 12(5), Article 5. https://doi.org/10.3390/biom12050694
Knorz, A. L., & Quante, A. (2022). Alzheimer’s Disease: Efficacy of Mono- and Combination Therapy. A Systematic Review. Journal of Geriatric Psychiatry and Neurology, 35(4), 475–486. https://doi.org/10.1177/08919887211044746
Lakshmi, S., Prakash, P., Essa, M. M., Qoronfleh, W. M., Akbar, M., Song, B.-J., Kumar, S., & Elumalai, P. (2018). Marine derived bioactive compounds for treatment of Alzheimer’s disease. Frontiers in Bioscience (Elite Edition), 10(3), 537–548. https://doi.org/10.2741/E840
Latina, V., Caioli, S., Zona, C., Ciotti, M. T., Borreca, A., Calissano, P., & Amadoro, G. (2018). NGF-Dependent Changes in Ubiquitin Homeostasis Trigger Early Cholinergic Degeneration in Cellular and Animal AD-Model. Frontiers in Cellular Neuroscience, 12. https://doi.org/10.3389/fncel.2018.00487
Lee, J., & Jun, M. (2019). Dual BACE1 and Cholinesterase Inhibitory Effects of Phlorotannins from Ecklonia cava—An In Vitro and in Silico Study. Marine Drugs, 17(2), Article 2. https://doi.org/10.3390/md17020091
Leirós, M., Alonso, E., Rateb, M. E., Houssen, W. E., Ebel, R., Jaspars, M., Alfonso, A., & Botana, L. M. (2015). Gracilins: Spongionella-derived promising compounds for Alzheimer disease. Neuropharmacology, 93, 285–293. https://doi.org/10.1016/j.neuropharm.2015.02.015
Liu, Y., Zhang, W., Li, L., Salvador, L. A., Chen, T., Chen, W., Felsenstein, K. M., Ladd, T. B., Price, A. R., Golde, T. E., He, J., Xu, Y., Li, Y., & Luesch, H. (2012). Cyanobacterial Peptides as a Prototype for the Design of Potent β-Secretase Inhibitors and the Development of Selective Chemical Probes for Other Aspartic Proteases. Journal of Medicinal Chemistry, 55(23), 10749–10765. https://doi.org/10.1021/jm301630s
Men, X., Han, X., Lee, S.-J., Oh, G., Jin, H., Oh, H.-J., Kim, E., Kim, J., Lee, B.-Y., Choi, S.-I., & Lee, O.-H. (2022). In-Depth Understanding of Ecklonia stolonifera Okamura: A Review of Its Bioactivities and Bioactive Compounds. Marine Drugs, 20(10), 607. https://doi.org/10.3390/md20100607
Miculas, D. C., Negru, P. A., Bungau, S. G., Behl, T., Hassan, S. S. ul, & Tit, D. M. (2023). Pharmacotherapy Evolution in Alzheimer’s Disease: Current Framework and Relevant Directions. Cells, 12(1), Article 1. https://doi.org/10.3390/cells12010131
Mycroft-West, C. J., Cooper, L. C., Devlin, A. J., Procter, P., Guimond, S. E., Guerrini, M., Fernig, D. G., Lima, M. A., Yates, E. A., & Skidmore, M. A. (2019). A Glycosaminoglycan Extract from Portunus pelagicus Inhibits BACE1, the β Secretase Implicated in Alzheimer’s Disease. Marine Drugs, 17(5), Article 5. https://doi.org/10.3390/md17050293
Mycroft-West, C. J., Devlin, A. J., Cooper, L. C., Procter, P., Miller, G. J., Fernig, D. G., Guerrini, M., Guimond, S. E., Lima, M. A., Yates, E. A., & Skidmore, M. A. (2020). Inhibition of BACE1, the β-secretase implicated in Alzheimer’s disease, by a chondroitin sulfate extract from Sardina pilchardus. Neural Regeneration Research, 15(8), 1546. https://doi.org/10.4103/1673-5374.274341
Naushad, M., Durairajan, S. S. K., Bera, A. K., Senapati, S., & Li, M. (2019). Natural Compounds with Anti-BACE1 Activity as Promising Therapeutic Drugs for Treating Alzheimerʼs Disease. Planta Medica, 85, 1316–1325. https://doi.org/10.1055/a-1019-9819
Neupane, R. P., Parrish, S. M., Bhandari Neupane, J., Yoshida, W. Y., Yip, M. L. R., Turkson, J., Harper, M. K., Head, J. D., & Williams, P. G. (2019). Cytotoxic Sesquiterpenoid Quinones and Quinols, and an 11-Membered Heterocycle, Kauamide, from the Hawaiian Marine Sponge Dactylospongia elegans. Marine Drugs, 17(7), Article 7. https://doi.org/10.3390/md17070423
Pardo-Moreno, T., González-Acedo, A., Rivas-Domínguez, A., García-Morales, V., García-Cozar, F. J., Ramos-Rodríguez, J. J., & Melguizo-Rodríguez, L. (2022). Therapeutic Approach to Alzheimer’s Disease: Current Treatments and New Perspectives. Pharmaceutics, 14(6), Article 6. https://doi.org/10.3390/pharmaceutics14061117
Paudel, P., Seong, S. H., Zhou, Y., Park, H. J., Jung, H. A., & Choi, J. S. (2019). Anti-Alzheimer’s Disease Activity of Bromophenols from a Red Alga, Symphyocladia latiuscula (Harvey) Yamada. ACS Omega, 4(7), 12259–12270. https://doi.org/10.1021/acsomega.9b01557
PubChem. (2024a). Bis(2,3,6-tribromo-4,5-dihydroxybenzyl) ether. https://pubchem.ncbi.nlm.nih.gov/compound/23426771
PubChem. (2024b). Chondroitin 4-sulfate. https://pubchem.ncbi.nlm.nih.gov/compound/24766
PubChem. (2024c). Heparitin sulfate. https://pubchem.ncbi.nlm.nih.gov/compound/53477715
Rafiquzzaman, S. M., Kim, E. Y., Lee, J. M., Mohibbullah, M., Alam, M. B., Soo Moon, I., Kim, J.-M., & Kong, I.-S. (2015). Anti-Alzheimers and anti-inflammatory activities of a glycoprotein purified from the edible brown alga Undaria pinnatifida. Food Research International, 77, 118–124. https://doi.org/10.1016/j.foodres.2015.08.021
Rivarti, A. W., Saputri, L. O., Harahap, H. S., & Permatasari, L. (2023). Alzheimer’s disease from a diabetic brain: Exploring the molecular process to determine the potential therapy target from marine sources. Pharmacy Education, 23(4), Article 4. https://doi.org/10.46542/pe.2023.234.189195
Russo, P., Kisialiou, A., Lamonaca, P., Moroni, R., Prinzi, G., & Fini, M. (2016). New Drugs from Marine Organisms in Alzheimer’s Disease. Marine Drugs, 14(1), Article 1. https://doi.org/10.3390/md14010005
Seong, S. H., Ali, M. Y., Kim, H.-R., Jung, H. A., & Choi, J. S. (2017). BACE1 inhibitory activity and molecular docking analysis of meroterpenoids from Sargassum serratifolium. Bioorganic & Medicinal Chemistry, 25(15), 3964–3970. https://doi.org/10.1016/j.bmc.2017.05.033
Sheokand, D., Grewal, A., Kumar, P., Chauhan, R., Saini, V., & Kumar, A. (2024). Molecular docking analysis of marine phytochemicals with BACE-1. Bioinformation, 20(2), 151–155. https://doi.org/10.6026/973206300200151
Syad, A. N., Rajamohamed, B. S., Shunmugaiah, K. P., & Kasi, P. D. (2016). Neuroprotective effect of the marine macroalga Gelidiella acerosa: Identification of active compounds through bioactivity-guided fractionation. Pharmaceutical Biology, 54(10), 2073–2081. https://doi.org/10.3109/13880209.2016.1145700
Tiwari, S., Atluri, V., Kaushik, A., Yndart, A., & Nair, M. (2019). Alzheimer’s disease: Pathogenesis, diagnostics, and therapeutics. International Journal of Nanomedicine, 14, 5541–5554. https://doi.org/10.2147/IJN.S200490
Wagle, A., Seong, S. H., Zhao, B. T., Woo, M. H., Jung, H. A., & Choi, J. S. (2018). Comparative study of selective in vitro and in silico BACE1 inhibitory potential of glycyrrhizin together with its metabolites, 18α- and 18β-glycyrrhetinic acid, isolated from Hizikia fusiformis. Archives of Pharmacal Research, 41(4), 409–418. https://doi.org/10.1007/s12272-018-1018-2
Wang, L., Yin, Y.-L., Liu, X.-Z., Shen, P., Zheng, Y.-G., Lan, X.-R., Lu, C.-B., & Wang, J.-Z. (2020). Current understanding of metal ions in the pathogenesis of Alzheimer’s disease. Translational Neurodegeneration, 9(1), 10. https://doi.org/10.1186/s40035-020-00189-z
Wijesekara, I., Yoon, N. Y., & Kim, S.-K. (2010). Phlorotannins from Ecklonia cava (Phaeophyceae): Biological activities and potential health benefits. BioFactors, 36(6), 408–414. https://doi.org/10.1002/biof.114
Williams, P., Sorribas, A., & Liang, Z. (2010). New Methods to Explore Marine Resources for Alzheimer’s Therapeutics. Current Alzheimer Research, 7(3), 210–213.
Xiang, S., Liu, F., Lin, J., Chen, H., Huang, C., Chen, L., Zhou, Y., Ye, L., Zhang, K., Jin, J., Zhen, J., Wang, C., He, S., Wang, Q., Cui, W., & Zhang, J. (2017). Fucoxanthin Inhibits β-Amyloid Assembly and Attenuates β-Amyloid Oligomer-Induced Cognitive Impairments. Journal of Agricultural and Food Chemistry, 65(20), 4092–4102. https://doi.org/10.1021/acs.jafc.7b00805
Yang, Y., & Qiu, L. (2024). Research Progress on the Pathogenesis, Diagnosis, and Drug Therapy of Alzheimer’s Disease. Brain Sciences, 14(6), Article 6. https://doi.org/10.3390/brainsci14060590
Zhou, Y., Sun, Y., Ma, Q.-H., & Liu, Y. (2018). Alzheimer’s disease: Amyloid-based pathogenesis and potential therapies. Cell Stress, 2(7), 150–161. https://doi.org/10.15698/cst2018.07.143
Zhu, Y.-Z., Liu, J.-W., Wang, X., Jeong, I.-H., Ahn, Y.-J., & Zhang, C.-J. (2018). Anti-BACE1 and Antimicrobial Activities of Steroidal Compounds Isolated from Marine Urechis unicinctus. Marine Drugs, 16(3), 94. https://doi.org/10.3390/md16030094
License
Copyright (c) 2024 Made Raditya Arhya Putra, Legis Ocktaviana Saputri, Teguh Budi Wicaksono, Kadek Nandita Nugraha, Ajeng Ayu Putri, Rika Kamila Salsabila, Puspa Zalika Fidelia
This work is licensed under a Creative Commons Attribution 4.0 International License.
Jurnal Biologi Tropis is licensed under a Creative Commons Attribution 4.0 International License.
The copyright of the received article shall be assigned to the author as the owner of the paper. The intended copyright includes the right to publish the article in various forms (including reprints). The journal maintains the publishing rights to the published articles.
Authors are permitted to disseminate published articles by sharing the link/DOI of the article at the journal. Authors are allowed to use their articles for any legal purposes deemed necessary without written permission from the journal with an acknowledgment of initial publication to this journal.