Metabolite Profile of Marine Sponge (Stylissa sp.) Lipid Extract and Its Effect on Bacterial Skin Infection
Authors
Farreh Alan Maulana , Ni Wayan Putri Utami , Ervina Handayani , Mila Mayanti Kabir , Baiq Putri Maharani Bine Inggit , Kukuh Waseso Jati Pangestu , Rizqa Fersiayana Deccati , Ni Made Amelia Ratnata Dewi , Anggit Listyacahyani SunarwidhiDOI:
10.29303/jbt.v24i1b.7848Published:
2024-12-14Issue:
Vol. 24 No. 1b (2024): Special IssueKeywords:
Fatty acid, Stylissa sp., Skin infection, Staphylococcus aureus.Articles
Downloads
How to Cite
Downloads
Metrics
Abstract
UV radiation from sunlight can induce the formation of free radicals, which can disrupt cellular homeostasis or DNA by triggering inflammatory signal transduction. The occurrence of inflammation in the skin can be aggravated by the presence of the bacterium Staphylococcus aureus. Previous studies have shown that the marine sponge Stylissa sp. contains an abundance of fatty acids and lipids compared to other species. Although Stylissa sp. has great potential for health applications, research on the bioactivity of lipid and fatty acid compounds from this sponge remains limited. Therefore, this study aims to explore the lipid content of Stylissa sp. as an alternative source of antibacterial agents against pathogens responsible for photoaging. The metabolite profiling of the extract was conducted using GC-MS, while the antibacterial activity was performed using the Kirby-Bauer method. Based on GC-MS profiling results, six compounds were identified in the lipid extract of Stylissa sp. namely palmitic acid, butyl glycol acetate, n-eicosylcyclohexane, isopropyl laurate, oleic acid, and 1-tetradecanol. Antibacterial evaluation of Stylissa sp. lipid extract at concentrations of 25%, 75%, and 100% showed antibacterial activity against Staphylococcus aureus, with inhibition zone diameters of 1.83, 2.17, and 2.92 mm, respectively. The results in this study have shown that the lipid extract of Stylissa sp. contains lipid compounds with potential anti-bacterial activity towards S. aureus. Future research to isolate unsaturated fatty acid compounds from the lipid extract of Stylissa sp. to achieve higher antibacterial activity is recommended.
References
Axelsson, M., & Gentili, F. (2014). A single-step method for rapid extraction of total from green microalgae. PLoS ONE2, 9(2), 17–20. https://doi.org/https://doi.org/10.1371/journal.pone.0089643
Bennett, H., Bell, J. J., Davy, S. K., Webster, N. S., & Francis, D. S. (2018). Elucidating the sponge stress response; lipids and fatty acids can facilitate survival under future climate scenarios. Global Change Biology, 24(7), 3130–3144. https://doi.org/https://doi.org/10.1111/gcb.14116
Bosch, R., Philips, N., Suárez-Pérez, J. A., Juarranz, A., Devmurari, A., Chalensouk-Khaosaat, J., & González. (2015). Mechanisms of photoaging and cutaneous photocarcinogenesis, and photoprotective strategies with phytochemicals. Antioxidants, 4(2), 248–268. https://doi.org/https://doi.org/10.3390/antiox4020248
Botić, T., Cör, D., Anesi, A., Guella, G., Sepčić, K., Janussen, D., Kersken, D., & Knez, Ž. (2015). Fatty acid composition and antioxidant activity of Antarctic marine sponges of the genus Latrunculia. Polar Biology, 38(10), 1605–1612. https://doi.org/https://doi.org/10.1007/s00300-015-1722-z
Cappuccino, J. G., & Welsh, C. (2018). Microbiology: A Laboratory Manual (11th ed.). Pearson Education Limited 2018.
Davis, W. ., & Stout, T. . (1971). Disc Plate Method of Microbiological Antibiotic Assay. Applied Microbiology, 659–665.
Diba, S., Antonius, C. S., Kurniawati, Y., Karowigno, S., & Budiamal, S. (2023). Diagnosa dan Tata Laksana Nevus Hori. Media Dermato-Venereologica Indonesiana, 49(4), 212–219. https://doi.org/10.33820/mdvi.v49i4.413
Gilda, G., Novia, E., Hendsun, H., Wellen, F., Firmansyah, Y., & Tan, S. T. (2024). Moist Sebagai Mediator Pada Korelasi Uv Damage Terhadap Kadar Porfirin Pada Siswa Kalam Kudus II Jakarta. Journal of Medicine and Health, 6(2), 31–39. https://doi.org/10.28932/jmh.v6i2.8671
Hendy, N. O., Indriyanti, R., & Gartika, M. (2020). Daya Antibakteri Asam Palmitat Bawang Putih (Allium sativum) Terhadap Streptococcus mutans ATCC 25175. Padjadjaran Journal of Dental Researchers and Students, 4(2), 109–114. https://doi.org/10.24198/pjdrs.v4i1.27595
Horrobin, D. . (1989). Essential fatty acids in clinical dermatology. Journal of the American Academy of Dermatology, 20(6), 1045–1053. https://doi.org/https://doi.org/10.1016/S0190-9622(89)70130-4
Iverson, S. ., Lang, S. L. ., & Cooper, M. . (2001). Comparison of the bligh and dyer and folch methods for total lipid determination in a broad range of marine tissue. Lipids, 36(11), 1283–1287. https://doi.org/https://doi.org/10.1007/s11745-001-0843 0
JS, C., NH, P., SY, H., JH, S., Kwak, & Inseok, C. K. (2013). The antibacterial activity of various saturated and unsaturated fatty acids against several oral pathogens. J Environmental Biology, 34, 673–676.
Latreille, J., Kesse-Guyot, E., Malvy, D., Andreeva, V., Galan, P., Tschachler, E., Hercberg, S., Guinot, C., & Ezzedine, K. (12 C.E.). Dietary Monounsaturated Fatty Acids Intake and Risk of Skin Photoaging. PLoS ONE2, 7(9), 3–9. https://doi.org/https://doi.org/10.1371/journal.pone.0044490
Lawson, M. ., Stoilov, I. ., Thompson, J. ., & Djerassi, C. (1988). Cell membrane localization of sterols with conventional and unusual side chains in two marine demonsponges. Lipids, 23(8), 750–754. https://doi.org/https://doi.org/10.1007/BF02536216
Lestari, I., Prajuwita, M., & Lastri, A. (2021). Penentuan Nilai SPF Kombinasi Ekstrak Daun Ketepeng Dan Binahong Secara In Vitro. Parapemikir : Jurnal Ilmiah Farmasi, 10(1), 1–10. https://doi.org/10.30591/pjif.v10i1.2030
Maromon, Y., Pakan, P., & Maria, E. D. (2020). Uji aktivitas anti bakteri minyak kelapa murni (virgin coconut oil) terhadap pertumbuhan bakteri Staphylococcus aureus secara in vitro. Cendana Medical Journal, 8(2), 250–255. https://ejurnal.undana.ac.id/CMJ/article/view/3494
Marzuki, I. (2018). Eksplorasi Spons Indonesia. In Nas Media Pustaka.
Niemi, C., Lage, S., & Gentili, F. . (2019). Comparisons of analysis of fatty acid methyl ester (FAME) of microalgae by chromatographic techniques. 2Algal Research, 39. https://doi.org/https://doi.org/10.1016/j.algal.2019.101449
Oktarina, E., Kimia, B. B., Kemasan, D., Perindustrian, K., Balai Kimia, J., & Timur, J. (2017). Alga : Potensinya pada Kosmetik dan Biomekanismenya (Algae: Potency on Cosmetic and Its Biomechanism). Majalah Teknologi Agro Industri (Tegi, 9(2).
Patel, M. K., Mishra, A., & Jha, B. (2016). Non-targeted metabolite profiling and scavenging activity unveil the nutraceutical potential of psyllium (Plantago ovata forsk). Frontiers in Plant Science2, 7, 1–8. https://doi.org/https://doi.org/10.3389/fpls.2016.00431
Pati, S., Nie, B., Arnold, R., & Cummings, B. . (2016). Extraction, chromatographic and mass spectrometric methods for lipid analysis. Biomedical Chromatography, 30(5), 695–709. https://doi.org/https://doi.org/10.1002/bmc.3683
Putranti, I. O., & Sistina, Y. (2021). Tinjauan Pustaka: Fotobiologi Ultraviolet Pada Jaringan Kulit. Mandala Of Health, 13(2), 33–55. https://doi.org/10.20884/1.mandala.2023.16.1.8379
Sulastri, E., Sari, A., & Mappiratu, M. (2016). Uji Aktivitas Antibakteri Krim Asam Laurat Terhadap Staphylococcus aureus ATCC 25923 Dan Pseudomonas aeruginosa. 2(2), 59–67.
Sunarwidhi, A. L., Rosyantari, A., Prasedya, E. S., Ardiana, N., Ilhami, B. T. K., Abidin, A. S., Ambana, Y., Kirana, I. A. P., Wirasisya, D. G., Anugrah, W., Fersiyana, R. D., & Dewi, N. M. A. R. (2021). The correlation between total protein content and antioxidant activity of collagen isolated from a marine sponge Stylissa flabelliformis collected from North Lombok Indonesia coast. IOP Conference Series: Earth and Environmental Science, 913(1). https://doi.org/https://doi.org/10.1088/1755-1315/913/1/012103
Tanaka, M., Yamamoto, Y., Misawa, E., Nabeshima, K., Saito, M., Yamauchi, K., Abe, F., & 2017Furukawa, F. (2017). Effects of Aloe Sterol Supplementation on Skin Elasticity, Hydration, and Collagen Score: A 12-Week Double-Blind, Randomized, Controlled Trial. Skin Pharmacology and Physiology, 29(6), 309–317. https://doi.org/https://doi.org/10.1159/000454718
Vonthron-Sénécheau, C. (2016). Seaweed in Health and Disease Prevention. Medicinal Properties: Antibiotic, Tonic, and Antiparasitic Properties., 11, 369–388.
License
Copyright (c) 2024 Farreh Alan Maulana, Ni Wayan Putri Utami, Ervina Handayani, Mila Mayanti Kabir, Baiq Putri Maharani Bine Inggit, Kukuh Waseso Jati Pangestu, Rizqa Fersiayana Deccati, Ni Made Amelia Ratnata Dewi, Anggit Listyacahyani Sunarwidhi
This work is licensed under a Creative Commons Attribution 4.0 International License.
Jurnal Biologi Tropis is licensed under a Creative Commons Attribution 4.0 International License.
The copyright of the received article shall be assigned to the author as the owner of the paper. The intended copyright includes the right to publish the article in various forms (including reprints). The journal maintains the publishing rights to the published articles.
Authors are permitted to disseminate published articles by sharing the link/DOI of the article at the journal. Authors are allowed to use their articles for any legal purposes deemed necessary without written permission from the journal with an acknowledgment of initial publication to this journal.