Storage Stability Analysis of Crude Amylase Extract from Banana Peel by Solid State Fermentation
Authors
Nurul Wakiah , Ummu Farah Fadillah , Sudirman Sudirman , Riskawati RiskawatiDOI:
10.29303/jbt.v25i3.9855Published:
2025-07-31Issue:
Vol. 25 No. 3 (2025): Juli-SeptemberKeywords:
Amylase, Enzyme stability, Waste valorizationArticles
Downloads
How to Cite
Downloads
Metrics
Abstract
Banana peel is a carbohydrate-rich by-product with potential as a fermentation substrate for enzyme production. This study aimed to evaluate the amylase production and storage stability of enzymes obtained through solid-state fermentation (SSF) of banana peel flour using Bacillus subtilis and Bacillus licheniformis. Fermentation was conducted for 24 and 48 hours, followed by crude enzyme extraction and storage for 24 hours at room temperature. Proximate analysis revealed banana peel flour contained 78.64% carbohydrates and 46.24% starch, supporting its suitability as a fermentation medium. The highest amylase activities were 50.36 IU/mL/min (B. subtilis) and 56.33 IU/mL/min (B. licheniformis) after 24 hours, with comparable values at 48 hours. However, enzyme activity declined by over 78% after 24 hours of storage, indicating low stability at room temperature. These findings confirm that banana peel flour is an effective, low-cost substrate for amylase production via SSF. Nevertheless, stabilization strategies post-fermentation are crucial to preserve enzyme activity during storage. This study highlights the dual benefit of converting agricultural waste into valuable enzymes and supports further research on improving enzyme shelf-life for industrial applications.
References
Akinfemiwa, O., Zubair, M., & Muniraj, T. (2023). Amylase. StatPearls.
AOAC. (2012). [AOAC] : Official Methods of Analysis (Volume I). In Wahshington DC (US) (Vol. 1, Issue Volume 1). Arlington, Virginia: Association of Official Analytical Chemist, INC. doi: 10.7312/seir17116-004
Călinoiu, L. F., & Vodnar, D. C. (2018). Whole grains and phenolic acids: A review on bioactivity, functionality, health benefits and bioavailability. Nutrients, 10(11), 1615. doi: 10.3390/nu10111615
Chen, H. (2013). Anaerobic solid-state fermentation. In Modern Solid State Fermentation : Theory and Practice (1st ed., p. 199). Berlin: Springer Dordrecht. doi: 10.1007/978-94-007-6043-1
Cordeiro, A. L., Lenk, T., & Werner, C. (2011). Immobilization of Bacillus licheniformis α-amylase onto reactive polymer films. Journal of Biotechnology, 154(4), 216–221. doi: 10.1016/j.jbiotec.2011.04.008
de Souza, P. M., & e Magalhães, P. de O. (2010). Application of microbial α-amylase in industry - a review. Brazilian Journal of Microbiology, 41(4), 850–861. doi: 10.1590/s1517-83822010000400004
Dundar, A. (2021). An investigation on psychochemical parameters and potential use of waste fruit peels as carbon sources for α-amylase production from Bacillus licheniformis. In Research & Reviews in Science and Mathematics (1st ed., Issue May). Ankara: Gece Publishing. Retrieved from https://www.researchgate.net/profile/Enihal-Ercan/publication/352178517_Imtiyaz_Sahibi_Publisher_Yasar_Hiz/links/60bda14992851cb13d83f470/Imtiyaz-Sahibi-Publisher-Yasar-Hiz.pdf#page=39
Farooq, M. A., Ali, S., Hassan, A., Tahir, H. M., Mumtaz, S., & Mumtaz, S. (2021). Biosynthesis and industrial applications of α-amylase: A review. Archives of Microbiology, 203(4), 1281–1292. doi: 10.1007/s00203-020-02128-y
Grahame, D. A. S., Bryksa, B. C., & Yada, R. Y. (2015). Factors affecting enzyme activity. In Improving and tailoring enzymes for food quality and functionality (pp. 11–55). Elsevier. doi: 10.1016/B978-1-78242-285-3.00002-8
Keharom, S., Mahachai, R., & Chanthai, S. (2016). The optimization study of α-amylase activity based on central composite design-response surface methodology by dinitrosalicylic acid method. International Food Research Journal, 23(1)(January).
Kokab, S., Asghar, M., Rehman, K., Asad, M. J., & Adedyo, O. (2003). Bio-Processing of Banana Peel for α-Amylase Production by Bacillus subtilis. International Journal of Agriculture & Biology, 5(1), 36–39. doi: 1560–8530/2003/05
Kyomuhimbo, H. D., & Brink, H. G. (2023). Applications and immobilization strategies of the copper-centred laccase enzyme; a review. Heliyon, 9(2), e13156. doi: 10.1016/j.heliyon.2023.e13156
Maghraby, Y. R., El-Shabasy, R. M., Ibrahim, A. H., & Azzazy, H. M. E. S. (2023). Enzyme Immobilization Technologies and Industrial Applications. ACS Omega, 8(6), 5184–5196. doi: 10.1021/acsomega.2c07560
Mehmood, T., Ahmed, S., Waseem, R., Saeed, S., Ahmed, W., Irfan, M., & Ullah, A. (2022). Valorization of Fruit Peels into Biovanillin and Statistical Optimization of Process Using Enterobacter hormaechei through Solid-State Fermentation. Fermentation, 8(2), 40. doi: http://dx.doi.org/10.3390/fermentation8020040
Mishra, S., Joghee, N. N., & Jayaraman, G. (2022). Virgibacillus dokdonensis VITP14 produces α-amylase and protease with a broader operational range but with differential thermodynamic stability. Biotechnology and Applied Biochemistry, 69(1), 92–100. doi: 10.1002/bab.2084
Naik, B., Kumar, V., Rizwanuddin, S., Chauhan, M., Gupta, A. K., Rustagi, S., Kumar, V., & Gupta, S. (2023). Agro-industrial waste: a cost-effective and eco-friendly substrate to produce amylase. Food Production, Processing and Nutrition, 5(1), 30. doi: /10.1186/s43014-023-00143-2
Nor-Liyana, J., Siroshini, K. T., Nurul-Syahirah, M. B., Chang, W. L., Nurul-Husna, S., Daryl, J. A., Khairul-Kamilah, A. K., & Hasnah, B. (2019). Phytochemical analysis of Elateriospermum tapos and its inhibitory effects on alpha-amylase, alpha-glucosidase and pancreatic lipase. Journal of Tropical Forest Science, 31(2), 240–248. doi: 10.26525/jtfs2019.31.2.240248
Nuraida, L., Hasanah, U., Athaya, D. R., & Refita, K. (2022). Teknologi Fermentasi Pangan (Cetakan 1,). Bogor: IPB Press.
Patil, A. G., Khan, K., Aishwarya, S., Padyana, S., Huchegowda, R., Reddy, K. R., Pais, R., Alrafas, H., Dsouza, R., & Madhavi, J. (2022). Fungal amylases and their industrial applications. In Industrially Important Fungi for Sustainable Development: Volume 2: Bioprospecting for Biomolecules (pp. 407–434). Springer. doi: /10.1007/978-3-030-85603-8_11
Paul, J. S., Gupta, N., Beliya, E., Tiwari, S., & Jadhav, S. K. (2021). Aspects and recent trends in microbial α-amylase: a review. Applied Biochemistry and Biotechnology, 193(8), 2649–2698.
Ramzan, I., Chaudhry, A., Bashir, H., Bilal, M., & Sumrin, A. (2019). Comparative study of alpha amylase producing mutated and unmutated Bacillus strains by taking cost effective measures. Pure Applied Biology, 8(2), 1789–1800. doi: 10.19045/bspab.2019.80122
Wakiah, N. (2023). Meta-Analisis, Systematic Review, dan Produksi α-Amilase Melalui Fermentasi Limbah Agroindustri. [Institut Pertanian Bogor]. In Institut Pertanian Bogor.
License
Copyright (c) 2025 Nurul Wakiah, Ummu Farah Fadillah, Sudirman Sudirman, Riskawati Riskawati

This work is licensed under a Creative Commons Attribution 4.0 International License.
Jurnal Biologi Tropis is licensed under a Creative Commons Attribution 4.0 International License.
The copyright of the received article shall be assigned to the author as the owner of the paper. The intended copyright includes the right to publish the article in various forms (including reprints). The journal maintains the publishing rights to the published articles.
Authors are permitted to disseminate published articles by sharing the link/DOI of the article at the journal. Authors are allowed to use their articles for any legal purposes deemed necessary without written permission from the journal with an acknowledgment of initial publication to this journal.