Range Different of Mono-Energetic 290 MeV/u Carbon Ion Across Geant4 Version with Variation of I-values

Penulis

M. Arif Efendi , Sitti Yani

DOI:

10.29303/jpft.v10i`1.6933

Diterbitkan:

2024-06-29

Terbitan:

Vol 10 No `1 (2024): January-June

Kata Kunci:

Bragg peak, carbon ion, Monte Carlo simulation

Articles

Cara Mengutip

Efendi, M. A., & Yani, S. (2024). Range Different of Mono-Energetic 290 MeV/u Carbon Ion Across Geant4 Version with Variation of I-values. Jurnal Pendidikan Fisika Dan Teknologi (JPFT), 10(`1), 186–191. https://doi.org/10.29303/jpft.v10i`1.6933

Unduhan

Data unduhan belum tersedia.

Metrik

Metrik sedang dimuat ...

Abstrak

The mean ionization potential (I-value) is a primary determinant of the position of the heavy ion Bragg peak. To minimize their impact on beam range errors and quantify their uncertainties, the currently used I-values in Geant4 material database are revisited. The study aims at comparing set of I-values in different Geant4 versions and cross validation with PHITS Monte Carlo (MC) code. The Bragg curves of mono-energetic 290 MeV/u carbon ion beams in a Polymethyl Methacrylate (PMMA) phantom were simulated using Geant4 versions 10.6.2 and 11.2.1. Similar beam energies were replicated using the PHITS code. The Bragg curves showed good agreement between the two versions of Geant4 MC code for an I-value of 74 eV, corresponding to G4_PLEXIGLASS in the material database. When the I-value was lowered to 65 eV and 48 eV, the Bragg curves from Geant4 version 11.2.1 shifted to shallower depths. This research provides insights for evaluating the Geant4 physics model.

Referensi

Agostinelli, S., Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce, P., … Zschiesche, D. (2003). GEANT4 - A simulation toolkit. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 506(3), 250–303. doi:10.1016/S0168-9002(03)01368-8

Allison, J., Amako, K., Apostolakis, J., Araujo, H., Dubois, P. A., Asai, M., … Peirgentili, M. (2006). Geant4 developments and applications. IEEE Transactions on Nuclear Science, 53(1), 270–278. doi:10.1109/TNS.2006.869826

Allison, J., Amako, K., Apostolakis, J., Arce, P., Asai, M., Aso, T., … Yoshida, H. (2016). Recent developments in GEANT4. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 835, 186–225. doi:10.1016/j.nima.2016.06.125

Baek, W. Y., Braunroth, T., De La Fuente Rosales, L., Rahm, J. M., & Rabus, H. (2020). Stopping power of water for carbon ions with energies in the Bragg peak region. Physical Review E, 102(6), 062418. doi:10.1103/PhysRevE.102.062418

Bär, E., Andreo, P., Lalonde, A., Royle, G., & Bouchard, H. (2018). Optimized I-values for use with the Bragg additivity rule and their impact on proton stopping power and range uncertainty. Physics in Medicine and Biology, 63(16), 165007.

Borja-Lloret, M., Barrientos, L., Bernabéu, J., Lacasta, C., Muñoz, E., Ros, A., … Llosa, G. (2023). Influence of the background in Compton camera images for proton therapy treatment monitoring. Physics in Medicine & Biology, 68(14), 144001. doi:10.1088/1361-6560/ACE024

Goetz, G., & Mitic, M. (2018). Carbon ion beam radiotherapy (CIRT) for cancer treatment: a systematic review of effectiveness and safety for 12 oncologic indications. HTA-Projektbericht 101. Ludwig Boltzmann Institute for Health Technology Assessment., (101), 220. Retrieved from http://eprints.hta.lbg.ac.at/1174/%0Ahttp://eprints.hta.lbg.ac.at/1174/1/HTA-Projektbericht_Nr.101.pdf

Kumazaki, Y., Akagi, T., Yanou, T., Suga, D., Hishikawa, Y., & Teshima, T. (2007). Determination of the mean excitation energy of water from proton beam ranges. Radiation Measurements, 42(10), 1683–1691. doi:10.1016/J.RADMEAS.2007.10.019

Niita, K., Sato, T., Iwase, H., Nose, H., Nakashima, H., & Sihver, L. (2006). PHITS-a particle and heavy ion transport code system. Radiation Measurements, 41(9–10), 1080–1090. doi:10.1016/j.radmeas.2006.07.013

NIST. (2022, December). NIST Compounds: Geant4 Material Database — Book For Application Developers 10.6 documentation. Retrieved from https://geant4-userdoc.web.cern.ch/UsersGuides/ForApplicationDeveloper/html/Appendix/materialNames.html

Paul, H. (2007, February 1). The mean ionization potential of water, and its connection to the range of energetic carbon ions in water. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms. North-Holland. doi:10.1016/j.nimb.2006.12.034

PTCOG. (2024). Particle Therapy Patient Statistics (per end of 2023, provisional). Retrieved May 27, 2024, from https://www.ptcog.site/images/Statistics/Patientstatistics-provisional_Dec2023.pdf

Sato, T., Iwamoto, Y., Hashimoto, S., Ogawa, T., Furuta, T., Abe, S. I., … Niita, K. (2024). Recent improvements of the particle and heavy ion transport code system–PHITS version 3.33. Journal of Nuclear Science and Technology, 61(1), 127–135. doi:10.1080/00223131.2023.2275736

Takada, E. (2010). Carbon Ion Radiotherapy at NIRS-HIMAC. Nuclear Physics A, 834(1–4), 730c-735c. doi:10.1016/j.nuclphysa.2010.01.132

Tsujii, H., Mizoe, J. E., Kamada, T., Baba, M., Kato, S., Kato, H., … Miyamoto, T. (2004). Overview of clinical experiences on carbon ion radiotherapy at NIRS. Radiotherapy and Oncology, 73(SUPPL. 2), S41–S49. doi:10.1016/S0167-8140(04)80012-4

Winterhalter, C., Taylor, M., Boersma, D., Elia, A., Guatelli, S., Mackay, R., … Aitkenhead, A. (2020). Evaluation of GATE-RTion (GATE/Geant4) Monte Carlo simulation settings for proton pencil beam scanning quality assurance. Medical Physics, 47(11), 5817–5828. doi:10.1002/mp.14481

Biografi Penulis

M. Arif Efendi, Gadjah Mada University

Department of Nuclear Engineering and Engineering Physics

Sitti Yani, IPB University

Department of Physics, Faculty of Mathematics and Natural Sciences

Lisensi

Hak Cipta (c) 2024 M. Arif Efendi, Sitti Yani

Creative Commons License

Artikel ini berlisensiCreative Commons Attribution-ShareAlike 4.0 International License.

Penulis yang menerbitkan Jurnal Pendidikan Fisika dan Teknologi (JPFT) setuju dengan ketentuan sebagai berikut:

  1. Penulis memiliki hak cipta dan memberikan hak jurnal untuk publikasi pertama dengan karya yang dilisensikan secara bersamaan di bawah Lisensi Internasional Creative Commons Attribution-ShareAlike License 4.0 (Lisensi CC-BY-SA). Lisensi ini memungkinkan penulis untuk menggunakan semua artikel, kumpulan data, grafik, dan lampiran dalam aplikasi penambangan data, mesin pencari, situs web, blog, dan platform lain dengan memberikan referensi yang sesuai. Jurnal memungkinkan penulis untuk memegang hak cipta tanpa batasan dan akan mempertahankan hak penerbitan tanpa batasan.
  2. Penulis dapat membuat pengaturan kontrak tambahan yang terpisah untuk distribusi non-eksklusif dari versi jurnal yang diterbitkan dari karya tersebut (misalnya, mempostingnya ke penyimpanan institusional atau menerbitkannya dalam sebuah buku), dengan pengakuan atas publikasi awalnya di Jurnal Pendidikan Fisika dan Teknologi (JPFT).
  3. Penulis diizinkan dan didorong untuk memposting karya mereka secara online (misalnya, di repositori institusional atau di situs web mereka) sebelum dan selama proses pengiriman, karena hal itu dapat mengarah pada pertukaran yang produktif, serta kutipan yang lebih awal dan lebih besar dari karya yang diterbitkan (Lihat The Pengaruh Akses Terbuka).