Rhizosphere Microbiome of Arabica Coffee (Coffea arabica L.) Analyzed Using Oxford Nanopore 16S Sequencing
Authors
Selvia Pinte Nate , Syafrina Sari LubisDOI:
10.29303/jbt.v25i4b.10763Published:
2025-12-16Issue:
Vol. 25 No. 4b (2025): Special IssueKeywords:
16S rRNA, Coffea arabica, Oxford Nanopore, RhizosphereArticles
Downloads
How to Cite
Downloads
Abstract
The rhizosphere microbiome plays a key role in nutrient cycling, soil structure, and plant health in Coffea arabica. This study analyzed the bacterial community composition of Arabica coffee rhizosphere soil from Tawar Miko, Aceh Tengah, using full-length 16S rRNA sequencing on the Oxford Nanopore platform. Taxonomic profiling revealed ten dominant phyla, including Pseudomonadota (43.77%), Acidobacteriota (18.17%), Planctomycetota (11.23%), Actinomycetota (5.81%), Myxococcota (4.08%), Bacteroidota (3.35%), Bacillota (2.86%), Thermodesulfobacteriota (2.69%), and Nitrospirota (2.26%). At the genus level, the most abundant taxa were Vicinamibacter (8.61%), Bradyrhizobium (4.14%), Brevitalea (4.03%), Pseudolabrys (2.64%), Nitrospira (2.26%), Acidibacter (1.97%), Streptomyces (1.76%), Sandaracinobacter (1.70%), and Paraburkholderia (1.57%). Species-level assessment indicated that Bradyrhizobium sp. was the most abundant, followed by Vicinamibacter sp., Brevitalea sp., Nitrospira sp., Paraburkholderia sp., Pseudolabrys sp., and Acidibacter sp., while low-abundance species (<3%) included Streptomyces sp. and Sandaracinobacter sp. These dominant species contribute to nitrogen fixation, nitrite oxidation, organic matter degradation, hydrocarbon metabolism, and natural biocontrol activity. The balanced distribution across taxa indicates a stable and functionally complementary microbial community that supports soil health and enhances the growth of Arabica coffee in highland agroecosystems.
References
Andrade, P. H. M., Oliveira, R., Santos, L. M., Pereira, A. C., Carvalho, J., & Nascimento, T. (2023). 16S metabarcoding analysis reveals the influence of environmental factors on rhizospheric microbiota of Coffea arabica in Brazil. Pesquisa Agropecuaria Brasileira, 58, e03345. https://doi.org/10.1590/S1678-3921.pab.2023.03345
Avelino, J., Barboza, B., Fonseca, A., Ramirez, C. A., Jimenez, J., Hidalgo, J., Soto, G., Coto, J., Monge, A., & Pereira, A. (2022). The rhizosphere microbiomes of five species of coffee trees. Microbiology Spectrum, 10(5), e00444-22. https://doi.org/10.1128/spectrum.00444-22
Avelino, T., Mendes, L. W., & Tsai, S. M. (2022). Acidobacteria community composition and ecological function in agricultural soils. Applied Soil Ecology, 175, 104450. https://doi.org/10.1016/j.apsoil.2022.104450
Brady, N. C., & Weil, R. R. (2021). The nature and properties of soils (16th ed.). Pearson.
Bultergahn, V. B., Menezes, K. M. S., Veloso, T. G. R., Santos, T. T., Paiva, C. A. V., & Gomes, E. A. (2024). Diversity of potential nitrogen-fixing bacteria from rhizosphere of Coffea arabica L. and Coffea canephora L. 3 Biotech, 14, 27. https://doi.org/10.1007/s13205-023-03785-y
Chaudhary, D. R., Sharma, S., & Tripathi, K. (2022). Microbial diversity and its ecological significance in rhizosphere soils: A metagenomic insight. Frontiers in Microbiology, 13, 869241. https://doi.org/10.3389/fmicb.2022.869241
Chaudhary, D. K., Kim, J., & Kim, J. (2022). Microbial community dynamics in rhizosphere and their role in ecosystem functioning. Frontiers in Microbiology, 13, 869211. https://doi.org/10.3389/fmicb.2022.869211
Chen, Q., Jiang, J., Wu, L., & Li, X. (2022). Rhizosphere microbiome diversity enhances plant tolerance to environmental stress. Microbiome Research Reports, 1(3), 112–124. https://doi.org/10.1186/s43979-022-00020-y
Chen, Y., Liu, S., & Li, X. (2022). Actinobacteria adaptation mechanisms in drought-stressed soils. Soil Biology and Biochemistry, 165, 108537. https://doi.org/10.1016/j.soilbio.2021.108537
Fulthorpe, R., Martin, A. R., & Isaac, M. E. (2020). Root endophytes of coffee (Coffea arabica): Variation across climatic gradients and relationships with functional traits. Phytobiomes Journal, 4(1), 1–10. https://doi.org/10.1094/PBIOMES-04-19-0021-R
Henriquez, V. H., Ramirez, A., Lopez, N., Cardenas, C., Gonzalez, J., Torres, M., Perez, D., Morales, D., Castillo, P., & Fuentes, L. (2024). Colombian coffee plantations sustain a diverse fungal community and nurture potentially beneficial species. Frontiers in Sustainable Food Systems, 8, 1345383. https://doi.org/10.3389/fsufs.2024.1345383
Huang, S., Deng, S., & Huang, Q. (2021). Soil pH and organic carbon properties drive soil bacterial communities along an elevational gradient. Frontiers in Microbiology, 12, 646124. https://doi.org/10.3389/fmicb.2021.646124
Mena, M. D., Torres, R., & Pérez, M. E. (2022). Ecological roles of Brevitalea spp. in nutrient cycling and soil health. Journal of Soil Science and Plant Nutrition, 22, 1400–1412. https://doi.org/10.1007/s42729-021-00754-1
Meng, J., Li, Y., Zhao, C., & Chen, J. (2020). Functional diversity of Bradyrhizobium species and their contribution to nitrogen fixation in soils. Environmental Microbiology, 22(11), 4567–4583. https://doi.org/10.1111/1462-2920.15152
Ondov, B. D., Bergman, N. H., & Phillippy, A. M. (2011). Interactive metagenomic visualization in a web browser. BMC Bioinformatics, 12, 385. https://doi.org/10.1186/1471-2105-12-385
Oxford Nanopore Technologies. (2020). Native Barcoding Kit SQK-NBD114 protocol. Oxford Nanopore Technologies.
Pino, A. F. S., Morales, J., Rodriguez, C., Silva, A., & Gutierrez, D. (2023). Characterization of the rhizosphere bacterial microbiome and its functional potential in Coffea arabica. BMC Plant Biology, 23, 352. https://doi.org/10.1186/s12870-023-04182-2
Rani, R., Kumar, S., & Sharma, R. (2023). Antimicrobial potential of Streptomyces species in soil ecosystems. Microbial Ecology, 86, 104–117. https://doi.org/10.1007/s00248-022-02163-2
Rilling, J. I., Acuna, J. J., Sadowsky, M. J., & Jorquera, M. A. (2021). Functional roles of rhizosphere microbiota in plant growth and resilience under stress conditions. Journal of Soil Science and Plant Nutrition, 21(2), 1230–1246. https://doi.org/10.1007/s42729-021-00476-9
Santoyo, G., Orozco-Mosqueda, M. D. C., & Govindappa, M. (2021). Plant growth-promoting bacteria as biological control agents of soil-borne pathogens. Biological Control, 158, 104602. https://doi.org/10.1016/j.biocontrol.2021.104602
Suharjono, Y., & Yuliatin, E. (2022). Bacteria communities of coffee plant rhizosphere and their potency as plant growth–promoting. Biodiversitas, 23(12), 6569–6577. https://doi.org/10.13057/biodiv/d231252
Tapaca, I. P. E., Ramirez, M., Gonzalez, L., Smith, J., Avelino, J., Martinez, P., & Lopez, A. (2024). Irradiance level and elevation shape the soil microbiome of Coffea arabica L. Environmental Microbiome, 19(1), 35. https://doi.org/10.1186/s40793-024-00619-9
Wang, H., Li, X., & Zhang, J. (2022). Environmental factors shaping soil microbiome composition in agricultural ecosystems. Soil Biology and Biochemistry, 170, 108697. https://doi.org/10.1016/j.soilbio.2022.108697
Wood, D. E., Lu, J., & Langmead, B. (2019). Kraken 2: Faster, more accurate metagenomic classification using a reduced database. Genome Biology, 20(1), 257. https://doi.org/10.1186/s13059-019-1891-0
Zhou, J., Wu, L., & Deng, Y. (2023). Environmental drivers shaping soil microbiome diversity in agroecosystems. Applied Soil Ecology, 182, 104702. https://doi.org/10.1016/j.apsoil.2022.104702
Zymo Research. (2021). ZymoBIOMICS DNA Miniprep Kit instruction manual. Zymo Research Corporation.
Author Biography
Syafrina Sari Lubis, UIN Ar-raniry Banda Aceh
Prodi Biologi
License
Copyright (c) 2025 Selvia Pinte Nate, Syafrina Sari Lubis

This work is licensed under a Creative Commons Attribution 4.0 International License.

Jurnal Biologi Tropis is licensed under a Creative Commons Attribution 4.0 International License.
The copyright of the received article shall be assigned to the author as the owner of the paper. The intended copyright includes the right to publish the article in various forms (including reprints). The journal maintains the publishing rights to the published articles.
Authors are permitted to disseminate published articles by sharing the link/DOI of the article at the journal. Authors are allowed to use their articles for any legal purposes deemed necessary without written permission from the journal with an acknowledgment of initial publication to this journal.
























