Isolation and Antibacterial Activity Test of Mangrove Rhizosphere Bacteria Against Escherichia coli and Staphylococcus aureus
Authors
Okto Asriatno , Dewinta Nur Alvionita , Muhammad Syarief , Dwirariska Aprilianasari SyamsuardiDOI:
10.29303/jbt.v25i4b.10875Published:
2025-12-16Issue:
Vol. 25 No. 4b (2025): Special IssueKeywords:
Antibacterial activity, Escherichia coli, Isolation, Mangrove Rhiozosphere, Staphylococcus aureusArticles
Downloads
How to Cite
Downloads
Abstract
The global rise in multidrug-resistant pathogens necessitates the exploration of unique ecological niches, such as the mangrove rhizosphere, as promising reservoirs for novel antibacterial agents. In this study, we aimed to isolate and characterize bacteria from the rhizosphere of Rhizophora sp. in the mangrove forest of Bypass Kendari, Southeast Sulawesi, and to evaluate their antibacterial activity against Escherichia coli and Staphylococcus aureus. Isolation was performed using the spread plate method on three different media: Nutrient Agar (NA), Zobell Marine Agar (ZMA), and International Streptomyces Project 2 (ISP2). A total of seven bacterial isolates were obtained (NA.1, ZMA.1, ZMA.2, ZMA.x, ISP2.1, ISP2.2, and ISP2.x), exhibiting diverse morphological characteristics ranging from mucoid to smooth colonies. Antibacterial screening using a modified Kirby-Bauer disc diffusion method revealed that only one isolate, ZMA.1, possessed broad-spectrum antagonistic activity, effectively inhibiting both the Escherichia coli and Staphylococcus aureus. Further microscopic identification via Gram staining characterized isolate ZMA.1 as a Gram-negative and rod-shaped bacteria, appearing in monobacillus and diplobacillus arrangements. These findings underscore the potential of Gram-negative bacteria from the mangrove rhizosphere as a promising source of new antibacterial candidates to combat multidrug-resistant pathogens.
References
Alsamannoudi, H., Alamri, A., Almotiri, T., Alharbi, S., Alshammari, D., Alnasser, B., & Alswayeh, H. (2021). Antimicrobial resistance: A growing global threat. International Journal of Health Sciences, 3(S1): 145–151. https://doi.org/10.53730/ijhs.v3nS1.15079
Ambeng, Zubair, H., Oka, N. P., & Tonggiroh, A. (2019). Potential of soil bacteria isolated from mangrove rhizosphere in Sinjai Regency to suppress the growth of Vibrio harveyi. Journal of Physics: Conference Series, 1341(2), Article 022016. https://doi.org/10.1088/1742-6596/1341/2/022016
Azzahra, F., Prasetyawati, E. T., & Lestari, S. R. (2025). Isolation and characterization of endophytic bacteria from the roots of Avicennia sp. in the mangrove area of Gunung Anyar, Surabaya. Jurnal Pembelajaran dan Biologi Nukleus, 11(1), 219–232. https://doi.org/10.36987/jpbn.v11i1.6596
Birkelbach, J., Seyfert, C. E., Walesch, S., & Muller, R. (2024). Harnessing Gram-negative bacteria for novel anti-Gram-negative antibiotics. Microbial Biotechnology, 17(1), 1–10. https://doi.org/10.1111/1751-7915.70032
Breijyeh, Z., Jubeh, B., & Karaman, R. (2020). Resistance of Gram-negative bacteria to current antibacterial agents and approaches to resolve it. Molecules, 25(6), Article 1340. https://doi.org/10.3390/molecules25061340
Chau, K. M., Quyen, D. V., Fraser, J. M., Smith, A. T., Van, T. T. H., & Moore, R. J. (2020). Broad spectrum antimicrobial activities from spore-forming bacteria isolated from the Vietnam Sea. PeerJ, 8, Article e10117. https://doi.org/10.7717/peerj.10117
Darabpour, E., Ardakani, M. R., Motamedi, H., & Ronagh, M. T. (2011). Isolation of a broad spectrum antibiotic producer bacterium, Pseudoalteromonas piscicida PG-02, from the Persian Gulf. Bangladesh Journal of Pharmacology, 6(2), 74–83. https://doi.org/10.3329/bjp.v6i2.8592
Fatimah, Rahayuningtyas, N. D., Nastiti, A., Alawiyah, D. D., Ramadhan, R., Geraldi, A., & Junairiah. (2024). Antibacterial and biosurfactant activity of endophytic bacteria isolated from mangrove plant in Lamongan, Indonesia. Biodiversitas, 25(7), 3035–3042. https://doi.org/10.13057/biodiv/d250725
Gopalakhrishnan, S., Sunder, J., Sasidharan, V., & Subramanian, S. E. (2016). Antibacterial activity of actinobacteria isolated from mangroves of Andaman and Nicobar Islands, India. Advances in Animal and Veterinary Sciences, 4(5), 230–236. https://doi.org/10.14737/journal.aavs/2016/4.5.230.236
Gupta, P., & Diwan, B. (2017). Bacterial exopolysaccharide mediated heavy metal removal: A review on biosynthesis, mechanism, and remediation strategies. Biotechnology Reports, 13, 58–71. https://doi.org/10.1016/j.btre.2016.12.006
He, W., Huan, X., Li, Y., Deng, Q., Chen, T., Xiao, W., Chen, Y., Ma, L., Liu, N., Shang, Z., & Wang, Z. (2025). A broad-spectrum antibiotic targets multiple-drug-resistant bacteria with dual binding targets and no detectable resistance. Nature Communications, 16, Article 7048. https://doi.org/10.1038/s41467-025-62407-4
Hutchings, M. I., Truman, A. W., & Wilkinson, B. (2019). Antibiotics: Past, present and future. Current Opinion in Microbiology, 51, 72–80. https://doi.org/10.1016/j.mib.2019.10.008
Kapoor, G., Saigal, S., & Elongavan, A. (2017). Action and resistance mechanisms of antibiotics: A guide for clinicians. Journal of Anaesthesiology Clinical Pharmacology, 33(3), 300–305. https://doi.org/10.4103/joacp.JOACP_349_15
Khairillah, Y. N., Alang, H., Haryanto, A., Syamsia, & Rismawati. (2024). Isolation and identification of bacteria producing antibiotic compounds from the rhizosphere of Avicennia marina against pathogenic bacteria in the mangrove ecosystem area of West Kalimantan. Bioscientist: Jurnal Ilmiah Biologi, 12(2), 1679–1691. https://doi.org/10.33394/bioscientist.v12i2.12527
Munita, J. M., & Arias, C. A. (2016). Mechanisms of antibiotic resistance. Microbiology Spectrum, 4(2). https://doi.org/10.1128/microbiolspec.VMBF-0016-2015
Murray, C. J. L., Ikuta, K. S., Sharara, F., et al. (2022). Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. The Lancet, 399(10325), 629–655. https://doi.org/10.1016/S0140-6736(21)02724-0
Muwawa, E. M., Makonde, H. M., Obieze, C. C., de Oliveira, I. G., Jefwa, J. M., Kahindi, J. H. P., & Khasa, D. P. (2024). Diversity and assembly patterns of mangrove rhizosphere mycobiome along the coast of Gazi Bay and Mida Creek in Kenya. PLoS ONE, 19(4), Article e0298237. https://doi.org/10.1371/journal.pone.0298237
Palit, K., Rath, S., Chatterjee, S., & Das, S. (2022). Microbial diversity and ecological interactions of microorganisms in the mangrove ecosystem: Threats, vulnerability, and adaptations. Environmental Science and Pollution Research, 29, 32467–32512. https://doi.org/10.1007/s11356-022-19048-7
Pramono, H., Irawan, N. T., Firdaus, M. R. A., Sudarno, Sulmartiwi, L., & Mubarak, A. S. (2019). Bacterial endophytes from mangrove leaves with antibacterial and enzymatic activities. Malaysian Journal of Microbiology, 15(7), 543–553. https://doi.org/10.21161/mjm.190352
Sari, R., Apridamayanti, P., & Pratiwi, L. (2022). Efektivitas SNEDDS kombinasi fraksi etil asetat daun cengkodok (Melastoma malabathricum) - antibiotik terhadap bakteri hasil isolat dari pasien ulkus diabetik. Pharmaceutical Journal of Indonesia, 7(2), 105–114. https://doi.org/10.21776/ub.pji.2022.007.02.5
Shanthakumar, S. P., Duraisamy, P., Vishwanath, G., Selvanesan, B. C., Ramaraj, V., & David, B. V. (2015). Broad spectrum antimicrobial compounds from the bacterium Exiguobacterium mexicanum MSSRFS9. Microbiological Research, 178, 59–65. https://doi.org/10.1016/j.micres.2015.06.007
Sharma, D., Kaur, T., Chadha, B. S., & Manhas, R. K. (2011). Antimicrobial activity of actinomycetes against multidrug resistant Staphylococcus aureus, Escherichia coli and various other pathogens. Tropical Journal of Pharmaceutical Research, 10(6), 801–808. https://doi.org/10.4314/tjpr.v10i6.14
Tumundo, C., Wewengkang, D. S., & Jumriadi. (2024). Uji potensi antibakteri ekstrak spons Stylissa carteri dari perairan Poopoh Minahasa terhadap bakteri Staphylococcus aureus dan Pseudomonas aeruginosa. PHARMACON, 13(1), 529–539. https://doi.org/10.35799/pha.13.2024.49697
Uddin, T. M., Chakraborty, A. J., Khusro, A., Zidan, B. M. R. M., Mitra, S., Emran, T., Dhama, K., Ripon, M. K. H., Gajdacs, M., Sahibzada, M. U. K., Hossain, M. J., & Koirala, N. (2021). Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects. Journal of Infection and Public Health, 14(12), 1750–1766. https://doi.org/10.1016/j.jiph.2021.10.020
Zhang, Y., Gui, H., Zhang, S., & Li, C. (2022). Diversity and potential function of prokaryotic and eukaryotic communities from different mangrove sediments. Sustainability, 14(6), Article 3333. https://doi.org/10.3390/su14063333
Zhongsheng, Y., Zhihao, Z., & Fang, L. (2023). Community structures of mangrove endophytic and rhizosphere bacteria in Zhangjiangkou National Mangrove Nature Reserve. Scientific Reports, 13, Article 17127. https://doi.org/10.1038/s41598-023-44447-2
License
Copyright (c) 2025 Okto Asriatno, Dewinta Nur Alvionita, Muhammad Syarief, Dwirariska Aprilianasari Syamsuardi

This work is licensed under a Creative Commons Attribution 4.0 International License.

Jurnal Biologi Tropis is licensed under a Creative Commons Attribution 4.0 International License.
The copyright of the received article shall be assigned to the author as the owner of the paper. The intended copyright includes the right to publish the article in various forms (including reprints). The journal maintains the publishing rights to the published articles.
Authors are permitted to disseminate published articles by sharing the link/DOI of the article at the journal. Authors are allowed to use their articles for any legal purposes deemed necessary without written permission from the journal with an acknowledgment of initial publication to this journal.
























