The Impact of Environmental Stress on Plant Cell Structure and Function
Authors
Astria Astria , Yuliani Putri Yofran , Yulita Erlina Ngama , Emaliano Jonsimus Lea Bhaghi , Veronika P. Sinta Mbia WaeDOI:
10.29303/jbt.v25i4b.10981Published:
2025-12-24Issue:
Vol. 25 No. 4b (2025): Special IssueKeywords:
Cellular adaptation, Environmental stress, Fine structure, Plant cells, Plant physiology, ROSArticles
Downloads
How to Cite
Downloads
Metrics
Abstract
Environmental stress is an external factor that affects the strength and function of plant cells, such as salt levels, extreme temperatures, heavy metals, and radiation. This can cause significant changes at the molecular level, including cell structure and chemical processes within plants. This article is a systematic summary of 30 scientific studies published in the last ten years, aiming to identify common patterns in how plant cells respond to non-living stressors. Studies have shown that environmental stressors can lead to the accumulation of free radicals (ROS). This can damage membranes, cause lipid oxidation, damage chloroplasts, and disrupt the activity of enzymes essential for photosynthesis and respiration. At the molecular level, adaptive responses occur by activating hormone signaling pathways, particularly abscisic acid (ABA) and ethylene. This also involves increased expression of genes related to water regulation and protection from oxidation, as well as activation of autophagy, a mechanism that destroys damaged cell parts. Changes in cellular components such as the vacuole, mitochondria, and cell wall indicate how cells work to maintain salt balance and basic body processes. This summary of various studies shows that environmental stress can cause complex problems, such as disruptions in metabolic processes, instability of internal organs, and changes in gene expression. Therefore, understanding how plant cells work and their structure is crucial for developing plant varieties that are resilient to climate change stress.
References
Akhmad, R. (2022). Pengaruh ketinggian lokasi tumbuh terhadap kadar total flavonoid dan daya antioksidan daun kirinyuh (Chromolaena odorata (L.) RM King & H. Rob) (Tesis doktoral, Universitas Islam Negeri Maulana Malik Ibrahim).
Apel, K., & Hirt, H. (2004). Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55, 373–399.
Bailey-Serres, J., Parker, J. E., Ainsworth, E. A., Oldroyd, G. E. D., & Schroeder, J. I. (2019). Genetic strategies for improving crop yields. Nature, 575(7781), 109–118.
Darmanti, S. (2015). Penebalan dinding sel xilem tanaman kedelai [Glycine max (L.) Merr.] var. Grobogan akibat cekaman ganda interferensi teki (Cyperus rotundus L.) dan kekeringan. Buletin Anatomi dan Fisiologi dh Sellula, 23(2), 23–28.
Dietz, K. J., Turkan, I., & Krieger-Liszkay, A. (2016). Redox- and reactive oxygen species-dependent signaling into and out of the photosynthesizing chloroplast. Plant Physiology, 171(3), 1541–1550.
Enzim, I. (2017). BAB 4. Teknologi Enzim (hlm. 37).
Foyer, C. H., & Noctor, G. (2011). Ascorbate and glutathione: The heart of the redox hub. Plant Physiology, 155(1), 2–18.
Foyer, C. H., Ruban, A. V., & Nixon, P. J. (2014). Photosynthesis solutions to enhance productivity. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1640), 20130290.
Hasanuzzaman, M., Bhuyan, M. H. M. B., Zulfiqar, F., Raza, A., Mohsin, S. M., Mahmud, J. A., Fujita, M., & Fotopoulos, V. (2020). Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants, 9(8), 681.
Hertika, A. M. S., & Putra, R. B. D. S. (2019). Ekotoksikologi untuk lingkungan perairan. Universitas Brawijaya Press.
Isrul, M., Adnan, A., & Islamia, M. N. (2025). Eksplorasi berbagai fungsi mitokondria melalui pendekatan meta-analisis dalam biologi seluler. Spizaetus: Jurnal Biologi dan Pendidikan Biologi, 6(2), 301–311.
Mailidarni, N., & Djafar, T. (2025). Fisiologi tumbuhan: Proses, mekanisme, dan adaptasi. Elfarazy Media Publisher.
Mandasari, S. P. A. (2025). BAB 3. Respirasi dan metabolisme energi. Dalam Fisiologi tanaman pangan (hlm. 41).
Mendrofa, J. S., Mendrofa, D. P., Lase, B. V. L., Gulo, K. I., Mendrofa, N. K., & Larosa, Y. M. (2025). Evaluasi ketahanan tanaman kacang tanah (Arachis hypogaea) terhadap cekaman kekeringan. Jurnal Ilmu Pertanian dan Perikanan, 2(2), 7–12.
Mittler, R. (2017). ROS are good. Trends in Plant Science, 22(1), 11–19.
Mittler, R., Zandalinas, S. I., Fichman, Y., & Van Breusegem, F. (2022). Reactive oxygen species signalling in plant stress responses. Nature Reviews Molecular Cell Biology, 23(10), 663–679.
Møller, I. M., Jensen, P. E., & Hansson, A. (2007). Oxidative modifications to cellular components in plants. Annual Review of Plant Biology, 58, 459–481.
Press, U. (2023). Antioksidan dan stres oksidatif. UAD Press.
Rhamadia, T. (2023). Pengaruh pemberian gel secretome mesenchymal stem cell hypoxia (SH-MSC) terhadap ekspresi gen P38 dan VEGF (Studi eksperimental in vivo pada tikus jantan galur Wistar model luka diabetik-like yang diinduksi streptozotocin) (Tesis magister, Universitas Islam Sultan Agung).
Santhiawan, P., & Suwardike, P. (2019). Adaptasi padi sawah (Oryza sativa L.) terhadap peningkatan kelebihan air sebagai dampak pemanasan global. Agro Bali: Agricultural Journal, 2(2), 130–144.
Sharma, P., Jha, A. B., Dubey, R. S., & Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany, 2012, 1–26.
Suzuki, N., Koussevitzky, S., Mittler, R., & Miller, G. (2012). ROS and redox signalling in the response of plants to abiotic stress. Plant, Cell & Environment, 35(2), 259–270.
Taiz, L., Zeiger, E., Møller, I. M., & Murphy, A. (2015). Plant physiology and development (Edisi ke-6). Sinauer Associates.
Telaumbanua, P. H., Nazara, R. V., Zebua, H. P., Samudin, S., Monde, A., Purba, J. H., ... & Mendrofa, P. K. T. (2024). Dasar-dasar Agronomi. Azzia Karya Bersama.
Wetipo, Y. S., Mangimbulude, J. C., & Rondonuwu, F. S. (2013). Produksi ROS akibat akumulasi ion logam berat dan mekanisme penangkal dengan antioksidan. Proceeding Biology Education Conference: Biology, Science, Environmental, and Learning, 10(1).
Widiatningrum, T., Prajanti, S. D. W., & Amelia, D. R. (2025). Ekofisiologi Tumbuhan sebagai Bagian dari Pertanian Berkelanjutan. Bookchapter Ekonomi Universitas Negeri Semarang, 3, 35-48.
Zhu, J. K. (2016). Abiotic stress signaling and responses in plants. Cell, 167(2), 313–324.
Zikri, H., Azijah, F. M., Aprilia, H., Fitriyyah, I., & Wijaya, S. S. (2025). Penentuan Pengaruh Plasmolisis pada Sel Daun Rhoeo Discolor. Flora: Jurnal Kajian Ilmu Pertanian dan Perkebunan, 2(1), 11-20.
Zuhri Multazam, S. P. (2025). BAB 5. Teknologi pengelolaan air dan cekaman kekeringan. Dalam Pengelolaan fisiologis tanaman tercekam (hlm. 95).
License
Copyright (c) 2025 Astria Astria, Yuliani Putri Yofran, Yulita Erlina Ngama, Emaliano Jonsimus Lea Bhaghi, Veronika P. Sinta Mbia Wae

This work is licensed under a Creative Commons Attribution 4.0 International License.

Jurnal Biologi Tropis is licensed under a Creative Commons Attribution 4.0 International License.
The copyright of the received article shall be assigned to the author as the owner of the paper. The intended copyright includes the right to publish the article in various forms (including reprints). The journal maintains the publishing rights to the published articles.
Authors are permitted to disseminate published articles by sharing the link/DOI of the article at the journal. Authors are allowed to use their articles for any legal purposes deemed necessary without written permission from the journal with an acknowledgment of initial publication to this journal.
























