The Composition of Arthropods in Nipah Fronds Decomposition at Sungai Kakap Mangrove Area in the West Kalimantan
Authors
Lastyanti Mulyani , Junardi , Rikhsan KurniatuhadiDOI:
10.29303/jbt.v23i4b.5718Published:
2023-11-08Issue:
Vol. 23 No. 1 (2023): Special IssueKeywords:
Allorchestoides, arthropod, decomposition, Nypa fructicans.Articles
Downloads
How to Cite
Downloads
Metrics
Abstract
Anthropogenic activities in Nypa palm (Nypa fructicans) forests directly leave a lot of residual nipa fronds, which take longer to decompose. The decomposition process involves decomposer organisms, one of which is Arthropods. Nevertheless, information regarding the composition of decomposition fronds is still limited. This study aims to obtain data and information regarding the composition of Arthropods and their relationship to the decomposition period. Arthropod sampling was carried out by hand collecting methods at 15, 25, 35, and 45 days after placement. The laying of the nipa palm fronds was determined randomly with a vertical position at 20 cm above the ground surface. Arthropod eggs, larvae, pupae, and imago samples were sorted and preserved in 70% Alcohol. Arthropod data obtained were analyzed descriptively. The results showed that the composition of Arthropods consisted of the class Crustacea and Insecta, each with one order (2 genera) and six orders (32 genera). The orders Diptera (Psychoda, Eristalinus) and Amphipoda (Allorchestoides) were dominant. The average number of individuals found increases with the decomposition period. The role of different arthropods influences their composition in the decomposition process of the nipa palm fronds. It is necessary to study the composition of microbes in each decomposition period.
References
Azmiera, N. Low, V. L. & Heo, C. C., (2021). Colonization of Rabbit Carcasses by Drain Fly Larvae, Psychoda sp. (Diptera: Psychodidae):The First Report. Acta Parasitologica, 66(2): 706-709. DOI: doi.org/10.1007/s11686-020-00313-z
Barnard, J. L. & Karaman, G. S., (1991). The Families and Genera of Marine Gammaridean Amphipoda (Except Marine Gammaroids). Records of the Australian Museum, Supplement, 13(1): 1-417. DOI: doi:10.3853/j.0812-7387.13.1991.91
Berg, B. & McClaugherty, C., (2020). Decomposition as a Process—some Main Features. In B. Berg, & C. McClaugherty, Plant Litter Decomposition, Humus Formation, Carbon Sequestration (4 ed.). Cham, Switzerland: Springer Nature, pp: 13-43. DOI: doi.org/10.1007/978-3-030-59631-6_2
Bouchard, R. W., (2004). Guide to Aquatic Invertebrates of the Upper Midwest. (L. J. Ferrington, & M. Karius, Eds.) St. Paul: Water Resources Research Center, University of Minnesota.
Bundschuh, R. Bundschuh, M. Otto, M. & Schulz, R., (2019). Food-related Exposure to Systemic Pesticides and Pesticides From Transgenic Plants: Evaluation of Aquatic Test Strategies. Environmental Sciences Europe, 31(87): 1-13. DOI: doi.org/10.1186/s12302-019-0266-1
Campoy, A. Pérez-Bañón, C. & Rojo, S., (2020). Intra-Puparial Development in the Hoverflies Eristalinus aeneus and Eristalis tenax (Diptera: Syrphidae). Journal of Morphology, 281(11): 1436-1445. DOI: doi.org/10.1002/jmor.21257
Campoy, A. Saez, L. Pérez-Bañón, C. & Rojo, S., (2019). Demography and Population Parameters of Two Species of Eristaline Flower Flies (Diptera, Syrphidae, Eristalini). Journal of Applied Entomology, 144(1-2): 133-143. DOI: doi.org/10.1111/jen.12717
Dey, M. K. & Hazra, A., (2022). Litter Fall and Decomposition of Mangrove Species (Excoecaria agallocha) in a Newly Emerged Island (Nayachar), West Bengal, India: w.r.f Soil Microarthropods. International Journal of Innovative Science and Research Technology, 5(10): 904-913.
Ebeling, A. Meyer, S. T. Abbas, M. Eisenhauer, N. Hillebrand, H. Lange, M. Scherber, C. Vogel, A. Weigelt, A. & Weisser, W. W., (2014). Plant Diversity Impacts Decomposition and Herbivory via Changes in Aboveground Arthropods. Journal Pone (PLOS ONE), 9(9): 1-8. DOI: doi.org/10.1371/journal.pone.0106529
Eisenbeis, G. & Wichard, W., (1987). Atlas on the Biology of Soil Arthropods (1 ed.). Berlin, Heidelberg: Springer. DOI: doi.org/10.1007/978-3-642-72634-7_1
Fusari, L. Dantas, G. & Pinho, L., (2018). Hand book of Thorp and Covich's Freshwater Invertebrates: Keys to Neotropical Hexapoda (4th ed., Vol. 3). (N. Hamada, J. Thorp, & D. C. Rogers, Eds.) London: Academic Press.
Gibb, T. J. & Oseto, C. Y., (2006). Arthropod Collection and Identification: Laboratory and Field Techniques (1 ed.). Amsterdam: Elsevier Academic Press.
Glime, J. M. (2017)., Terrestrial Insects: Holometabola-Diptera. In J. M. Glime, Bryophyte Ecology (Vol. 2). Houghton, MI: Michigan Technological University.
Gomez, M. Barreiro, F. Lopez, J. & Lastra, M., (2018). Effect of Upper Beach Macrofauna on Nutrient Cycling of Sandy Beaches: Metabolic Rates During Wrack Decay. Marine Biology, 165(133): 1-12. DOI: doi.org/10.1007/s00227-018-3392-1
Gullan, P. & Cranston , P., (2010). The Insect: An Outline of Entomology (4th ed.). Hoboken: Wiley-Blackwell Publication
Hernández, N. A. Flores, C. J. López, D. P. & Lozano, M. A., (2021). Aquatic Invertebrate Communities in Areas Covered and Devoid of the Floating Fern Salvinia Within the Mangrove Forest in the Boquerón Wildlife Refuge, Cabo Rojo, Puerto Rico. Caribbean Journal of Science, 51(2): 46-165. DOI: doi.org/10.18475/cjos.v51i2.a1
Junardi & Riyandi, (2020). Sintasan dan Pertumbuhan Larva Cacing Nipah Namalycastis Rhodochorde (Polychaeta: Nereididae) pada Budidaya Dengan Dua Sumber Pakan Berbeda. Jurnal Akuakultur Rawa Indonesia, 8(2). DOI: doi.org/10.36706/jari.v8i2.11715
Junardi, (2008). Karakteristik Morfologi dan Habitat Cacing Nipah Namalycastis rhodochorde (Polychaeta: Nereididae: Namanereididae) di Kawasan Hutan Mangrove Estuaria Sei Kakap Kalimantan Barat. Jurnal Sains MIPA, 14(2): 85-89.
Khadem-Safdarkhani, H. Hajiqanbar, H. Riegler, M. Seeman, O. dan Katlav, A., (2022). Two New Phoretic Species of Heterostigmatic Mites (Acari: Prostigmata: Neopygmephoridae and Scutacaridae) on Australian Hydrophilid Beetles (Coleoptera: Hydrophilidae). Insects, 13(5), pp. 483. DOI: doi.org/10.3390/insects13050483
Kurniatuhadi, R. Setyawati, T. R. & Yanti, A. H., (2019). Aktivitas Enzimatik Streptomyces spp. yang Diisolasi dari Usus dan Feses Cacing Nipah (Namalycastis rhodochorde). Pros. SemNas. Peningkatan Mutu Pendidikan, 1(1): 125-130.
LeCroy, S. E., (2000). An Illustrated identification guide to the nearshore marine and estuarine gammaridean Amphipoda of Florida (Vol. 1). Tallahassee, Florida: Florida Department of Environmental Protection, Division of Resource Assessment and Management, Bureau of Laboratories.
Lee, S. Jones, E. Diele, K. Castellanos-Galindo, G. & Nordhaus, I., (2017). Chapter 3: Biodiversity. In V. H. Rivera-Monroy, S. Y. Lee, E. Kristensen, & R. R. Twilley, Mangrove Ecosystems: A Global Biogeographic Perspective. Cham, Switzerland: Springer Nature, pp. 55-86. DOI: doi.org/10.1007/978-3-319-62206-4_3
Macandong, D. B. Manlubatan, M. B. Javier, J. M. Edrial, J. D. Mango, K. S. De Luna, J. E. Nayoos, J. & Porcioncula, R. P., (2017). Leaf Litter Decomposition and Diversity of Arthropod Decomposers in Tropical Muyong Forest in Banaue, Philippines. Paddy and Water Environment, 16: 265-277. DOI: doi.org/10.1007/s10333-017-0624-9
Sanchez-Galvan, I. Marcos-Garcia, M. Galante, E. & Mico, E., (2018). Unraveling Saproxylic Insect Interaction in Tree Hollows from Iberian Mediterranean Forest. Environ, 47: 300-308. DOI: doi.org/10.1093/ee/nvy008
Sari, K. W. Yunasfi & Suryanti, A., (2017). Decomposition of Mangrove Leaf Litter Rhizophora apiculata in Bagan Asahan Village, Tanjungbalai District, Asahan Regency, North Sumatera Province. Acta Aquatica, 4(2): 88-94. DOI: doi.org/10.29103/aa.v4i2.308
Sheikh, A. A. Rehman, N. & Kumar, R., (2017). Diverse Adaptations in Insect: A. Journal of Entomology and Zoology Studies, 5(2): 343-350.
Siders, A. C. Compson, Z. G. Hungate, B. A. Dijkstra, P. Koch, G. W. & Marks, J. C., (2020). The Influence of Leaf Type on Carbon and Nitrogen Assimilation by Aquatic Invertebrate Communities: A New Perspective on Trophic Efficiency. Ecosystems, 24(4): 788-805. DOI: doi.org/10.1007/s10021-02000550-3.
Smith, K. G., (1989). An introduction to the Immature Stages of British Flies: Diptera Larvae, with Notes on Eggs, Puparia and Pupae (Vol. 10). London: Royal Entomological Society.
Sousa, W. P. & Dangremond, E. M., (2011). Trophic Interactions in Coastal and Estuarine Mangrove Forest Ecosystems. Treatise on Estuarine and Coastal Science, 6: 43-93. DOI: doi.org/10.1016/B978-0-12-374711-2.00606-9
Sundermann, A. Lohse, S. Beck, L. A. & Haase, P., (2007). Key to the Larval Stages of Aquatic True Flies (Diptera), Based on the Operational Taxa List for Running Waters in Germany. Annales de Limnologie-International Journal of Limnology, 43(1): 61-74. DOI: doi.org/10.1051/limn/2007028
Thiel, M. & Duffy, J., (2007). The Behavioral Ecology of Crustaceans: A Primer in Taxonomy, Morphology, and Biology. In M. Thiel & J. Duffy Evolutionary Ecology of Social and Sexual Systems. Oxford: Oxford University Press, pp. 3-28. DOI: doi.org/10.1093/acprof:oso/9780195179927.003.0001
Thompson, F. Rotheray, G. & Zumbado, M., (2010). Syrphidae: Manual of Central American Diptera. In B. Brown, A. Borkent, J. Cumming, D. Wood, N. Woodley, & M. Zumbado, Manual of Central American Diptera. Ottawa: NRC Research Press, pp. 763-792.
Tie, L. Wei, S. Peñuelas, J. Sardans, J. Peguero, G. Zhou, S. Liu, X. Hu, J. Huang, C., (2021). Phosphorus Addition Reverses the Negative Effect of Nitrogen Addition on Soil Arthropods During Litter Decomposition in a Subtropical Forest. Science of The Total Environment, 781: 146786. DOI: doi.org/10.1016/j.scitotenv.2021.146786
Tyssen, P. J., (2010). Keys for Identification of Immature Insects. In J. G. Amendt, Current Concepts in Forensic Entomology. Dordrecht: Springer, pp. 25-42. DOI: doi.org/10.1007/978-1-4020-9684-6_2
Ulyshen, M. D. Müller, J. & Seibold, S., (2016). Bark Coverage and Insects Influence Wood Decomposition: Direct and Indirect Effects. Applied Soil Ecology, 105: 25-30. DOI: doi.org/10.1016/j.apsoil.2016.03.017
Ulyshen, M. D., (2018). Saproxylic Diptera. In M. D. Ulyshen, Saproxylic Insect. Athens: Zoological Monographs, Vol. 1, pp. 167.
Wongkamhaeng, K. Dumrongrojwattana, P. & Shin, M.-H., (2018). Discovery of a New Genus and Species of Dogielinotid Amphipod (Crustacea: Amphipoda: Dogielinotidae) from the Nipa palm in Thailand, with an updated key to the genera. PLoS ONE, 13(10): 1-15. DOI: doi.org/10.1371/journal.pone.0204299
Author Biography
Junardi, Universitas Tanjungpura
License
Copyright (c) 2023 Lastyanti Mulyani, Junardi, Rikhsan Kurniatuhadi
This work is licensed under a Creative Commons Attribution 4.0 International License.
Jurnal Biologi Tropis is licensed under a Creative Commons Attribution 4.0 International License.
The copyright of the received article shall be assigned to the author as the owner of the paper. The intended copyright includes the right to publish the article in various forms (including reprints). The journal maintains the publishing rights to the published articles.
Authors are permitted to disseminate published articles by sharing the link/DOI of the article at the journal. Authors are allowed to use their articles for any legal purposes deemed necessary without written permission from the journal with an acknowledgment of initial publication to this journal.