Remediation of Ex-Unlicensed Gold Mining Using Rice Husk Biochar: its Effect on Reducing Mercury Levels
Authors
Riza Hamkary Salam , Taufik Fauzi , A. A. Ketut Sudharmawan , Mulyati , SuwardjiDOI:
10.29303/jbt.v23i2.6063Published:
2023-11-20Issue:
Vol. 23 No. 2 (2023): Special IssueKeywords:
Adsorption Mechanism, biochar, mercury (Hg), rice husk.Articles
Downloads
How to Cite
Downloads
Metrics
Abstract
: The dangers of mercury in nature cause negative impacts on the environment and humans. The nature of mercury is bioaccumulative and toxic, and it cannot be degraded quickly but only through valence transformation. One effort that can be made to reduce the level of toxicity from mercury is to use biochar as an adsorbent agent in the soil. This article's goal is to review data regarding the use of biological charcoal (biochar) as a soil adsorbent for mercury. In order to clean up soil that has been contaminated with mercury (Hg), rice husk biochar plays a crucial function. Other than that, by using these organic materials instead of synthetic ones, soil production can be increased while environmental impact is reduced by 56%. Mercury is absorbed by biochar through a number of different mechanisms, including: (1) electrostatic bonds; (2) K+ and Na+ with Hg2+ and Hg+ ions simultaneously; (3) covalent reduction of mercury from Hg2+ to Hg+ and Hg0; (4) formation of a mineral complex (Hg2(OH)2) through precipitation of Hg2+ with carboxyl groups, such as lactones; and (5) complexation reactions on oxygen-containing functional groups such as - In comparison to soil alone, the use of biochar along with other organic elements can boost the capacity of heavy metal adsorption. With this combination, mercury levels were reduced to 12.45 ppm while soil pH increased dramatically from 0.3 to 1.33 units, near to neutral.
References
Abbas, K., Znad, H., & Awual, M. R. (2018). A ligand anchored conjugate adsorbent for effective mercury(II) detection and removal from aqueous media. Chemical Engineering Journal, 334, 432–443. DOI: https://doi.org/https://doi.org/10.1016/j.cej.2017.10.054
Abukari, A. (2019). Influence of Rice Husk Biochar on Water Holding Capacity of Soil in The Savannah Ecological Zone of Ghana. Turkish Journal of Agriculture - Food Science and Technology, 7, 888–891. DOI: https://doi.org/10.24925/turjaf.v7i6.888-891.2488
Agustono, B., Lamid, M., Ma’ruf, A., & Purnama, M. T. E. (2017). Identifikasi Limbah Pertanian dan Perkebunan sebagai Bahan Pakan Inkonvensional di Banyuwangi. Jurnal Medik Veteriner, 1(1), 12–22. DOI: https://doi.org/10.20473/jmv.vol1.iss1.2017.12-22
AMAP. (2013). Technical Background Report for the Global Mercury Assessment. Arctic Monitoring and Assessment Programme, 263.
Annisa, W., & Hairani, A. (2021). Biochar-Materials for Remediation on Swamplands: Mechanisms and Effectiveness Biochar-Bahan Remediasi Tanah Rawa: Mekanisme dan Efektivitasnya. DOI: https://doi.org/10.21082/jsdl.v15n1.2021.13-22
Aryanti, E., & Hera, N. (2019). Sifat Kimia Tanah Area Pasca Tambang Emas: (Studi Kasus Pertambangan Emas Tanpa Izin Di Kenegerian Kari Kecamatan Kuantan Tengah, Kabupaten Kuantan Singingi). Jurnal Agroteknologi, 9, 21. DOI: https://doi.org/10.24014/ja.v9i2.5681
Bobby J. Polii, & Desmi N. Sonya. (2002). Pendugaan Kandungan Merkuri Dan Sianida Di Daerah Aliran Sungai (Das) Buyat Minahasa. Ekoton, 2(1), 31–37.
Carro, L., Barriada, J. L., Herrero, R., & Sastre de Vicente, M. E. (2011). Adsorptive behaviour of mercury on algal biomass: Competition with divalent cations and organic compounds. Journal of Hazardous Materials, 192(1), 284–291. DOI: DOI: https://doi.org/https://doi.org/10.1016/j.jhazmat.2011.05.017
Claoston, N., Samsuri, A. W., Ahmad Husni, M. H., & Mohd Amran, M. S. (2014). Effects of pyrolysis temperature on the physicochemical properties of empty fruit bunch and rice husk biochars. Waste Management & Research : The Journal of the International Solid Wastes and Public Cleansing Association, ISWA, 32(4), 331–339. DOI: https://doi.org/10.1177/0734242X14525822
Clarkson, T. W., & Magos, L. (2006). The toxicology of mercury and its chemical compounds. Critical Reviews in Toxicology, 36(8), 609–662. DOI: https://doi.org/10.1080/10408440600845619
Das, O., Sarmah, A. K., & Bhattacharyya, D. (2015). A sustainable and resilient approach through biochar addition in wood polymer composites. Science of The Total Environment, 512–513, 326–336. DOI: DOI: https://doi.org/https://doi.org/10.1016/j.scitotenv.2015.01.063
Duong, V., Khanh, N., Nguyen, N., Phi, N., Nguyen, T.-D., & Xo, D. (2017). Impact of biochar on the water holding capacity and moisture of basalt and grey soil. Journal of Science Ho Chi Minh City Open University, 7, 36–43.
Fellet, G., Marmiroli, M., & Marchiol, L. (2014). Elements uptake by metal accumulator species grown on mine tailings amended with three types of biochar. Science of The Total Environment, 468–469, 598–608. DOI: https://doi.org/https://doi.org/10.1016/j.scitotenv.2013.08.072
Gascó, G., Paz-Ferreiro, J., Cely, P., Plaza, C., & Méndez, A. (2016). Influence of pig manure and its biochar on soil CO2 emissions and soil enzymes. Ecological Engineering, 95, 19–24. DOI: https://doi.org/https://doi.org/10.1016/j.ecoleng.2016.06.039
Ghorbani, M., Asadi, H., & Abrishamkesh, S. (2019). Effects of rice husk biochar on selected soil properties and nitrate leaching in loamy sand and clay soil. International Soil and Water Conservation Research, 7(3), 258–265. DOI: https://doi.org/https://doi.org/10.1016/j.iswcr.2019.05.005
Guo, X., Li, M., Liu, A., Jiang, M., Niu, X., & Liu, X. (2020). Adsorption Mechanisms and Characteristics of Hg2+ Removal by Different Fractions of Biochar. Water, 12, 2105. DOI: https://doi.org/10.3390/w12082105
Hamzah, A., & Hapsari, R. I. (2017). Remediasi Lahan Pertanian yang Tercemar Logam Berat untuk Menghasilkan Produk Pangan yang Sehat. Seminar Nasional Hasil Penelitian Universitas Kanjuruhan Malang, 5(1), 133–139.
Hamzah, A., & Priyadarshini, R. (2019). Remediasi Tanah Tercemar Logam Berat. UNITRI Press, 1(0341), 105–112.
Henrianto, A., Okalia, D., & Mashadi, M. (2019). Uji Beberapa Sifat Fisika Tanah Bekas Tambang Emas Tanpa Izin ( Peti ) Di Tiga Kecamatan Di Daratan Sepanjang Sungai Kuantan. Jurnal Agronomi Tanaman Tropika (Juatika), 1, 19–31. DOI: https://doi.org/10.36378/juatika.v1i1.41
Hou, D., Gu, Q., Ma, F., & O’Connell, S. (2016). Life cycle assessment comparison of thermal desorption and stabilization/solidification of mercury contaminated soil on agricultural land. Journal of Cleaner Production, 139, 949–956. DOI: https://doi.org/https://doi.org/10.1016/j.jclepro.2016.08.108
Hseu, Z.-Y., SU, S.-W., Lai, H., Guo, H.-Y., CHEN, T.-C., & Chen, Z.-S. (2010). Remediation techniques and heavy metal uptake by different rice varieties in metal‐contaminated soils of Taiwan: New aspects for food safety regulation and sustainable agriculture. Soil Science & Plant Nutrition, 56, 31–52. DOI: https://doi.org/10.1111/j.1747-0765.2009.00442.x
Jia, Y., Liu, J., Su, S., Liang, Q., Zeng, X., & Li, T. (2018). Study of the Effect of Pyrolysis Temperature on the Cd2+ Adsorption Characteristics of Biochar. Applied Sciences, 8, 1019. DOI: https://doi.org/10.3390/app8071019
Kılıç, M., Keskin, M. E., Mazlum, S., & Mazlum, N. (2008). Hg(II) and Pb(II) adsorption on activated sludge biomass: Effective biosorption mechanism. International Journal of Mineral Processing, 87(1), 1–8. DOI: https://doi.org/https://doi.org/10.1016/j.minpro.2008.01.001
Komarayati, S., Mustaghfirin, M., & Sofyan, K. 200. (2007). Kualitas Arang Kompos Limbah Industri Kertas dengan Variasi Penambahan Arang Serbuk Gergaji The qualities of Compost Charcoal Manufactured from Paper-mill Waste with Varying Addition of Charcoal Sawdust. Jurnal Ilmu Dan Teknologi Kayu Tropis, 5(2), 78–84. URL: http://ejournalmapeki.org/index.php/JITKT/article/view/265
Kong, H., He, J., Gao, Y., Wu, H., & Zhu, X. (2011). Cosorption of Phenanthrene and Mercury(II) from Aqueous Solution by Soybean Stalk-Based Biochar. Journal of Agricultural and Food Chemistry, 59(22), 12116–12123. DOI: https://doi.org/10.1021/jf202924a
Lehmann J, J. S. (2012). Biochar for Environmental Management. In Biochar for Environmental Management.
Liu, X., Zhang, A., Ji, C., Joseph, S., Bian, R., Li, L., Pan, G., & Paz-Ferreiro, J. (2013). Biochar’s effect on crop productivity and the dependence on experimental conditions—a meta-analysis of literature data. Plant and Soil, 373(1), 583–594. DOI: https://doi.org/10.1007/s11104-013-1806-x
Lubis, S. S. (2020). Bioremediasi Logam Berat Oleh Fungi Laut. Amina, 1(2), 91–102. DOI: https://doi.org/10.22373/amina.v1i2.411
Mariwy, A., Male, Y. T., & Manuhutu, J. B. (2019). Mercury (Hg) Contents Analysis in Sediments at Some River Estuaries in Kayeli Bay Buru Island. IOP Conference Series: Materials Science and Engineering, 546(2), 22012. DOI: https://doi.org/10.1088/1757-899X/546/2/022012
NEDES. (2019). Mercury: Sources, Transport, Deposition and Impacts.
NTB, D. (2018). Laporan Kajian Teknis – Rencana Aksi Daerah Pengurangan dan Penghapusan Merkuri (RAD-PPM).
Nwajiaku, I. M., Olanrewaju, J. S., Sato, K., Tokunari, T., Kitano, S., & Masunaga, T. (2018). Change in nutrient composition of biochar from rice husk and sugarcane bagasse at varying pyrolytic temperatures. International Journal of Recycling of Organic Waste in Agriculture, 7(4), 269–276. DOI: https://doi.org/10.1007/s40093-018-0213-y
O’Connor, D., Peng, T., Li, G., Wang, S., Duan, L., Mulder, J., Cornelissen, G., Cheng, Z., Yang, S., & Hou, D. (2018). Sulfur-modified rice husk biochar: A green method for the remediation of mercury contaminated soil. Science of The Total Environment, 621, 819–826. DOI: https://doi.org/https://doi.org/10.1016/j.scitotenv.2017.11.213
Pratama, B. S., Aldriana, P., Ismuyanto, B., & Hidayati, A. S. D. S. N. (2018). Konversi Ampas Tebu Menjadi Biochar Dan Karbon Aktif Untuk Penyisihan Cr(VI). Jurnal Rekayasa Bahan Alam Dan Energi Berkelanjutan, 2(1 SE-Articles), 7–12. DOI: https://doi.org/10.21776/ub.rbaet.2018.002.01.02
Romadhan, P. G. H. (2022). Correlation Of Soil Acidity Degree And Mercury Content Of Ex-Gold Mine Land. 12(1), 62–71.
Romadhan, P., Gusmini, G., & Hermansah, H. (2022). Perbaikan Sifat Kimia Lahan Bekas Tambang Emas Melalui Aplikasi Biochar Sekam Padi dan Pupuk Kandang Ayam. Agrotrop : Journal on Agriculture Science; Vol 12 No 1. DOI: 10.24843/AJoAS.2022.V12.I01.P09
Schuster, E. (1991). The behavior of mercury in the soil with special emphasis on complexation and adsorption processes - A review of the literature. Water Air & Soil Pollution, 56, 667–680.
Setiawan, K. A., Sutedjo, S., & Matius, P. (2018). Komposisi Jenis Tumbuhan Bawah Di Lahan Revegetasi Pasca Tambang Batubara. ULIN: Jurnal Hutan Tropis, 1(2), 182–195. DOI: https://doi.org/10.32522/ujht.v1i2.1012
Setyowati, J. (2018). Kinetika Adsorpsi Ion Logam Cu, Cd, dan Mn dalam Air Limbah Menggunakan Adsorben Serbuk Gergaji Kayu Meranti. 1–74.
Shafeeyan, M. S., Daud, W. M. A. W., Houshmand, A., & Shamiri, A. (2010). A review on surface modification of activated carbon for carbon dioxide adsorption. Journal of Analytical and Applied Pyrolysis, 89(2), 143–151. DOI: https://doi.org/https://doi.org/10.1016/j.jaap.2010.07.006
Singh, B. (2018). Rice husk ash. In Waste and Supplementary Cementitious Materials in Concrete: Characterisation, Properties and Applications. Elsevier Ltd. DOI: https://doi.org/10.1016/B978-0-08-102156-9.00013-4
Sun, L., Chen, D., Wan, S., & Yu, Z. (2015). Performance, kinetics, and equilibrium of methylene blue adsorption on biochar derived from eucalyptus saw dust modified with citric, tartaric, and acetic acids. Bioresource Technology, 198, 300–308. DOI: https://doi.org/https://doi.org/10.1016/j.biortech.2015.09.026
Tan, X., Liu, Y., Zeng, G., Wang, X., Hu, X., Gu, Y., & Yang, Z. (2015). Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere, 125, 70–85. DOI: https://doi.org/https://doi.org/10.1016/j.chemosphere.2014.12.058
Uchimiya, M., Lima, I. M., Klasson, K. T., & Wartelle, L. H. (2010). Contaminant immobilization and nutrient release by biochar soil amendment: Roles of natural organic matter. Chemosphere, 80(8), 935–940. DOI: https://doi.org/https://doi.org/10.1016/j.chemosphere.2010.05.020
Walcarius, A., & Delacôte, C. (2005). Mercury(II) binding to thiol-functionalized mesoporous silicas: critical effect of pH and sorbent properties on capacity and selectivity. Analytica Chimica Acta, 547(1), 3–13. DOI: https://doi.org/https://doi.org/10.1016/j.aca.2004.11.047
Wang, J., Feng, X., Anderson, C. W. N., Xing, Y., & Shang, L. (2012). Remediation of mercury contaminated sites – A review. Journal of Hazardous Materials, 221–222, 1–18. DOI: https://doi.org/https://doi.org/10.1016/j.jhazmat.2012.04.035
Wang, L., Hou, D., Cao, Y., Ok, Y. S., Tack, F. M. G., Rinklebe, J., & O’Connor, D. (2020). Remediation of mercury contaminated soil, water, and air: A review of emerging materials and innovative technologies. Environment International, 134, 105281. DOI: https://doi.org/https://doi.org/10.1016/j.envint.2019.105281
WHO. (2017). Mercury and Health. https://www.who.int/news-room/factsheets/detail/mercury-and-health#:~:text=Exposure to mercury20– even small,%2C kidneys%2C skin and eyes
Wijaya, H. (2018). Kajian Dosis Pupuk Abu Sekam Padi terhadap Pertumbuhan dan Serapan Si pada Tanaman Jagung (Zea mays L.) [Mataram]. URL: http://eprints.unram.ac.id/7440/1/JURNAL.pdf
Windeatt, J. H., Ross, A. B., Williams, P. T., Forster, P. M., Nahil, M. A., & Singh, S. (2014). Characteristics of biochars from crop residues: Potential for carbon sequestration and soil amendment. Journal of Environmental Management, 146, 189–197. DOI: https://doi.org/https://doi.org/10.1016/j.jenvman.2014.08.003
Y, A. (2014). Uji Serapan Merkuri (Hg) oleh Tanaman Jagung (Zea mays L.) pada Tanah Tercemar Tailing Gelondongan dan Tong. Mataram.
Yardim, M. F., Budinova, T., Ekinci, E., Petrov, N., Razvigorova, M., & Minkova, V. (2003). Removal of mercury (II) from aqueous solution by activated carbon obtained from furfural. Chemosphere, 52(5), 835–841. DOI: https://doi.org/https://doi.org/10.1016/S0045-6535(03)00267-4
Zhu, B., Fan, T., & Zhang, D. (2008). Adsorption of copper ions from aqueous solution by citric acid modified soybean straw. J. Hazard. Mater., 153, 300
License
Copyright (c) 2023 Riza Hamkary Salam, Taufik Fauzi, A. A. Ketut Sudharmawan, Mulyati, Suwardji
This work is licensed under a Creative Commons Attribution 4.0 International License.
Jurnal Biologi Tropis is licensed under a Creative Commons Attribution 4.0 International License.
The copyright of the received article shall be assigned to the author as the owner of the paper. The intended copyright includes the right to publish the article in various forms (including reprints). The journal maintains the publishing rights to the published articles.
Authors are permitted to disseminate published articles by sharing the link/DOI of the article at the journal. Authors are allowed to use their articles for any legal purposes deemed necessary without written permission from the journal with an acknowledgment of initial publication to this journal.