Potential Combination of Phytoremediation Plants and Compost in Remediation of Hg in Ex-Gold Mine Soil Contaminated Mercury (Hg)
Authors
Amarrusli Ali Amri , Taufik Fauzi , A. A. Ketut Sudharmawan , Mulyati Mulyati , Suwardji SuwardjiDOI:
10.29303/jbt.v24i3.7243Published:
2024-07-31Issue:
Vol. 24 No. 3 (2024): July - SeptemberKeywords:
Absorption mechanism, compost, mercury (Hg), phytoremediation, plants.Articles
Downloads
How to Cite
Downloads
Metrics
Abstract
Heavy metal mercury pollution in the environment can have negative impacts on both surrounding ecosystems and human health. Sources of mercury pollution often come from mining activities, particularly from many unlicensed gold mines (PETI) that use the mercury amalgamation method to extract gold. Due to the persistent, bioaccumulative, and toxic nature of mercury, contamination in the soil has increased. One effort to reduce mercury toxicity is the application of absorption methods using phytoremediation plants and compost as regulating factors. The aim of this study is to review sources of information related to the use of phytoremediation plants and the application of compost as remediators to clean mercury (Hg)-contaminated soil. To reduce levels of heavy metal contamination, plants employ five phytoremediation mechanisms: phytoextraction, phytostabilization, rhizofiltration, phyto degradation, and phytovolatilization. Therefore, selecting hyperaccumulator plants that have the ability to accumulate mercury (Hg) at levels 100 times higher than ordinary plants is crucial for effective remediation. Additionally, the use of compost as a source of organic material can enhance mercury mobility. The addition of organic materials such as compost can increase C organic content, cation exchange capacity (CEC), pH, and Hg-chelate formation, thereby maximizing mercury absorption by plants. This combination has a positive impact on reducing mercury levels in the soil and is environmentally safe.
References
Anwar, M. C., Rudijanto I.W, H., Triyantoro, B., & Wibowo, G. M. (2019). Pembuatan Pupuk Kompos Dengan Komposter Dalam Pemanfaatan Sampah Di Desa Bringin Kecamatan Bringin Kabupaten Semarang. Link, 15(1), 46. https://doi.org/10.31983/link.v15i1.4441
Ayilara, M. S., Adeleke, B. S., Adebajo, M. T., Akinola, S. A., Fayose, C. A., Adeyemi, U. T., Gbadegesin, L. A., Omole, R. K., Johnson, R. M., Edhemuino, M., Ogundolie, F. A., & Babalola, O. O. (2023). Remediation by enhanced natural attenuation; an environment-friendly remediation approach. Frontiers in Environmental Science, 11, 1182586. https://doi.org/10.3389/fenvs.2023.1182586
Darmono. (1995). Logam Dalam Sistem Biologi Makhluk Hidup.UI-Press:Jakarta Du, X., Zhu, Y.G., Liu, W.J., and Zhao, X.S., 2005. Uptake of mercury (Hg) by seedlings of rice (Oryza sativa L.) gown in solution culture and interactions with arsenate uptake. J. Environmental and Experimental Botany, 54: 1–7.
Dewi, T., et al. (2017). Petunjuk Teknis “Remediasi Lahan Sawah Dan Hortikultura Dataran Rendah Tercemar Merkuri Dan Arsen Melalui Pemanfaatan Bioremediator”. Pati : Balai penelitian Lingkungan pertanian. ISBN 978-602-1327-08-1.
Farisi, M., Putra, A. K., & Novianti, N. (2022). Penggunaan Merkuri pada Tambang Emas Ilegal: Diaturkah Dalam Minamata Convention? Uti Possidetis: Journal of International Law, 3(3), 320–344. https://doi.org/10.22437/up.v3i3.19281
Hamzah, A., & Priyadarshini, R. (2019). Remediasi Tanah Tercemar Logam Berat. UNITRI Press, 1(0341), 105–112.
Henrianto, A., Okalia, D., & Mashadi, M. (2019). Uji Beberapa Sifat Fisika Tanah Bekas Tambang Emas Tanpa Izin ( PETI ) Di Tiga Kecamatan Di Daratan Sepanjang Sungai Kuantan. Jurnal Agronomi Tanaman Tropika (Juatika), 1(1), 19–31. https://doi.org/10.36378/juatika.v1i1.41
Hidayati, N., (2013). Heavy Metal Hyperaccumulator Plant Physiologi. Jurnal Teknik Lingkungan., Vol. 14(2). Hal: 73-82
Kafle, A., Timilsina, A., Gautam, A., Adhikari, K., Bhattarai, A., and Aryal, N. (2022). Phytoremediation: Mechanisms, plant selection and enhancement by natural and synthetic agents. Environ. Adv. 8, 100203. https://doi:10.1016/j.envadv.2022.100203
Lubis, S. S. (2020). Bioremediasi Logam Berat Oleh Fungi Laut. Amina, 1(2), 91–102. doi: https://doi.org/10.22373/amina.v1i2.411
Masowa, M., Kutu, F., Babalola, O., and Mulidzi, A. (2022). Optimizing application rate of winery solid waste compost for improving the performance of maize (zea mays L) grown on luvisol and cambisol. Appl. Ecol. Environ. Res. 20, 815–828. https://doi:10.15666/aeer/2001815828
Muna, N., Prasetyo, Y., & Sasmito, B. (2020). Analisis Perbandingan Metode Pca (Principal Component Analysis) Dan Indeks Mineral Lempung Untuk Pemodelan Sebaran Kandungan Bahan Organik Tanah Menggunakan Citra Satelit Landsat Di Kabupaten Kendal. Jurnal Geodesi Undip. Vol 9, No 1,ISSN : 2337-845
Nascimento, C. W. A. D., & Xing, B. (2006). Phytoextraction: A review on enhanced metal availability and plant accumulation. Scientia Agricola, 63(3), 299–311. http://dx.doi.org/10.1590/S0103-90162006000300014
NEDES. (2019). Mercury: Sources, Transport, Deposition and Impacts.
Nnaji, N. D., Onyeaka, H., Miri, T., & Ugwa, C. (2023). Bioaccumulation for heavy metal removal: A review. SN Applied Sciences, 5(5), 125. https://doi.org/10.1007/s42452-023-05351-6
Notohadiprawiro, T. 2006. Logam berat dalam Pertanian. UGM Pres : Yogyakarta.
Ong, S. K., Surampalli, R. Y., Bhandari, A., Champagne, P., Tyagi, R. D., & Lo, I. (Eds.). (2007). Natural Processes and Systems for Hazardous Waste Treatment. American Society of Civil Engineers. https://doi.org/10.1061/9780784409398
Padmavathiamma, P. K., & Li, L. Y. (2007). Phytoremediation Technology: Hyper-accumulation Metals in Plants. Water, Air, and Soil Pollution, 184(1–4), 105–126. https://doi.org/10.1007/s11270-007-9401-5
Putra, M. K., & Kusumarini, N. (2018). Ekstraksi Merkuri Dari Limbah Pengolahan Bijih. Jurnal Tanah dan Sumberdaya Lahan Vol 5 No 2 : 847-856
Putri, K. (2014). Remediasi Tanah Tercemar Merkuri (Hg) Menggunakan Tanaman Digitaria Ciliaris (Retz.) Koeler Dan Fimbristylis Aphylla (Lamk) Vahl. Masters Thesis, Universitas Andalas.
Ratnawati, R., & Faizah, F. (2020). Phytoremediation of Mercury Contaminated Soil with the Addition of Compost. Journal of Engineering and Technological Sciences, 52(1), 66–80. https://doi.org/10.5614/j.eng.technol.sci.2020.52.1.5
Romadhan, P., Gusmini, G., & Hermansah, H. (2022a). Korelasi Derajat Kemasaman Tanah Dan Kandungan Merkuri Tanah Bekas Tambang Emas Melalui Aplikasi Bahan Organik. Agroscience (AGSCI), 12(1), 62. https://doi.org/10.35194/agsci.v12i1.2151
Romadhan, P., Gusmini, G., & Hermansah, H. (2022b). Perbaikan Sifat Kimia Lahan Bekas Tambang Emas Melalui Aplikasi Biochar Sekam Padi dan Pupuk Kandang Ayam. Agrotrop : Journal on Agriculture Science, 12(1), 99. https://doi.org/10.24843/AJoAS.2022.v12.i01.p09
Sarifuddinn, E., & Patadungan, Y. S. (2017). Pengaruh Asam Humat Dan Fulvat Ekstrak Kompos Thitonia Diversifolia Terhadap Hgkhelat, Ph Dan C-Organik Entisol Tercemar Merkuri. e-J. Agrotekbis 5 (3) : 284 – 290.
Schuster, E. (1991). The behavior of mercury in the soil with special emphasis on complexation and adsorption processes - A review of the literature. Water, Air, & Soil Pollution, 56(1), 667–680. DOI: https://doi.org/10.1007/BF00342308
Setyowati, J. (2018). Kinetika Adsorpsi Ion Logam Cu, Cd, dan Mn dalam Air Limbah Menggunakan Adsorben Serbuk Gergaji Kayu Meranti. 1–74
Smolinska, B. (2015). Green waste compost as an amendment during induced phytoextraction of mercury-contaminated soil. Environmental Science and Pollution Research, 22(5), 3528–3537. https://doi.org/10.1007/s11356-014-3601-5
Smolinska, B., & Leszczynska, J. (2017). Photosynthetic pigments and peroxidase activity of Lepidium sativum L. during assisted Hg phytoextraction. Environmental Science and Pollution Research, 24(15), 13384–13393. https://doi.org/10.1007/s11356-017-8951-3
Tampubolon, K., Zulkifli, T. B. H., & Alridiwirsah, A. (2020). Kajian Gulma Eleusine indica Sebagai Fitoremediator Logam Berat. AGRINULA: Jurnal Agroteknologi dan Perkebunan, 3(1), 1–9. https://doi.org/10.36490/agri.v3i1.82
Tiodar, E. D., Văcar, C. L., & Podar, D. (2021). Phytoremediation and Microorganisms-Assisted Phytoremediation of Mercury-Contaminated Soils: Challenges and Perspectives. International Journal of Environmental Research and Public Health, 18(5), 2435. https://doi.org/10.3390/ijerph18052435
Wang, L., Hou, D., Cao, Y., Ok, Y. S., Tack, F. M. G., Rinklebe, J., & O’Connor, D. (2020). Remediation of mercury contaminated soil, water, and air: A review of emerging materials and innovative technologies. Environment International, 134, 105281. https://doi.org/10.1016/j.envint.2019.105281
WHO. (2017). Mercury and Health. https://www.who.int/newsroom/factsheets/detail/mercuryandhealth#:~:text=Expuretomercury20–evensmall,%2Ckidneys%2Cskinandeyes
Xiao, Y., Zhang, G., Guo, J., Zhang, Z., Wang, H., Wang, Y., Wang, Z., Yuan, H., & Cui, D. (2022). Pollution Characteristics and Risk Assessments of Mercury in Jiutai, a County Region Thriving on Coal Mining in Northeastern China. Sustainability, 14(16), 10366. https://doi.org/10.3390/su141610366
License
Copyright (c) 2024 Amarrusli Ali Amri, Taufik Fauzi, A. A. Ketut Sudharmawan, Mulyati Mulyati, Suwardji Suwardji
This work is licensed under a Creative Commons Attribution 4.0 International License.
Jurnal Biologi Tropis is licensed under a Creative Commons Attribution 4.0 International License.
The copyright of the received article shall be assigned to the author as the owner of the paper. The intended copyright includes the right to publish the article in various forms (including reprints). The journal maintains the publishing rights to the published articles.
Authors are permitted to disseminate published articles by sharing the link/DOI of the article at the journal. Authors are allowed to use their articles for any legal purposes deemed necessary without written permission from the journal with an acknowledgment of initial publication to this journal.