Exploring Potential Aquaculture-Immunostimulant-Peptides Derived from Chlorella sorokiniana
Authors
Nur Maulida Safitri , Wiga Alif Violando , Achmad Suhermanto , Riza Rizkiah , Iman Mukhaimin , Taufik Hadi Ramli , Asthervina Widyastami Puspitasari , Atiqoh ZummahDOI:
10.29303/jbt.v24i3.7585Published:
2024-09-23Issue:
Vol. 24 No. 3 (2024): July - SeptemberKeywords:
Chlorella sorokiniana, Trypsin Enzymatic Hydrolysates, Immunostimulants, Peptides, TCA DigestionArticles
Downloads
How to Cite
Downloads
Metrics
Abstract
Chlorella sorokiniana is a microalgae with an outstanding nutritional profile and numerous therapeutic substances that can be used as an immunostimulant, including in aquaculture. This research aimed to investigate and characterize peptides isolated from C. sorokiniana protein using TCA digestion and hydrolyzed enzymatically with trypsin. Peptides were then subsequently identified using Tandem LC-MS/MS and Mascot Distiller. Results showed that the percentage of pure protein yield following TCA digestion was 54.66%, and 12 peptides with lengths ranging from 7 to 23 sequences were discovered after trypsin digestion. These peptides originated from various enzymes and chloroplast proteins, including protein synthesis elongation factor TU, photosystem I iron-sulfur center, photosystem II 43 kDa, Ycf4, ATP-dependent zinc metalloprotease FtsH homolog, nitrate reductase, chloroplastic glucose-6-phospate dehydrogenase, and ATP synthase CF1 alpha chain. These findings demonstrated that C. sorokiniana might serve as a source of immunostimulant peptides and proteins, particularly for aquaculture biota.
References
Aebersold R. & Mann M. (2003). Mass Spectrometry-Based Proteomics. Nature. 422(6928), 198-207.
Aluko RE. (2012). Bioactive Peptides (Chapter 3). In Functional Foods and Nutraceuticals. New York: Springer. DOI: https://doi.org/10.1007/978-1-4614-3480-1
Andersen G., Nissen P. & Nyborg J. (2003, August 1). Elongation factors in protein biosynthesis. Elsevier BV, 28(8), 434-441. https://doi.org/10.1016/s0968-0004(03)00162-2
Balafrej H., Bogusz D., Triqui Z E A., Guédira A., Bendaou N., Smouni A. & Fahr, M. (2020). Zinc Hyperaccumulation in Plants: A Review. Multidisciplinary Digital Publishing Institute. 9(5): 562-562. https://doi.org/10.3390/plants9050562
Bashir K., Rasheed S., Kobayashi T., Seki M. & Nishizawa N.K. (2016). Regulating Subcellular Metal Homeostasis: The Key to Crop Improvement. Frontiers Media. 7. https://doi.org/10.3389/fpls.2016.01192
Bishop W.M. & Zubeck H.M. (2012). Evaluation of Microalgae for use as Nutraceuticals and Nutritional Supplements. Journal of Nutrition and Food Sciences. 02(05). https://doi.org/10.4172/2155-9600.1000147
Caffarri S., Tibiletti T., Jennings R C. & Santabarbara S. (2014). A Comparison Between Plant Photosystem I and Photosystem II Architecture and Functioning. Bentham Science Publishers. Current Protein & Peptide Sciences. 15(4): 296-331. https://doi.org/10.2174/1389203715666140327102218
Caporgno M.P. & Mathys A. (2018). Trends in Microalgae Incorporation Into Innovative Food Products With Potential Health Benefits. Nutrition and Food Science Technology. 5. https://doi.org/10.3389/fnut.2018.00058
Chou N., Cheng C., Wu H., Lai C., Lin L., Pan I. & Ko C. (2012). Chlorella sorokiniana-Induced Activation and Maturation of Human Monocyte-Derived Dendritic Cells through NF-κB and PI3K/MAPK Pathways. Evidence-Based Complementary and Alternative Medicine: eCAM. https://www.hindawi.com/journals/ecam/2012/735396/
Corpas F.J. & Barroso J.B. (2014). NADPH-generating dehydrogenases: their role in the mechanism of protection against nitro-oxidative stress induced by adverse environmental conditions. Frontiers. 2. https://doi.org/10.3389/fenvs.2014.00055
Czworkowski J. & Moore P.B. (1996). The Elongation Phase of Protein Synthesis. Academic Press. 293-332. https://doi.org/10.1016/s0079-6603(08)60366-9
Domon B. & Aebersold R. (2006). Mass spectrometry and protein analysis. Science. 312(5771): 212-217. DOI: 10.1126/science.1124619
Finazzi G., Drapier D. & Rappaport F. (2009). The CF0F1 ATP Synthase Complex of Photosynthesis. In The Chlamydomonas Sourcebook (Second Edition). Academic Press. 639-670. https://doi.org/10.1016/b978-0-12-370873-1.00026-5
Fu Y., Li X., Fan B., Zhu C. & Chen Z. (2022). Chloroplasts Protein Quality Control and Turnover: A Multitude of Mechanisms. International Journal of Molecular Sciences. 23(14): 7760-7760. https://doi.org/10.3390/ijms23147760
Gao R., Yu Q., Shen Y., Chu Q., Chen G., Fen S., Yang M., Yuan, L., McClements D.J. & Sun Q. (2021). Production, bioactive properties, and potential applications of fish protein hydrolysates: Developments and challenges. Trends in Food Science & Technology. 110: 687-699. https://doi.org/10.1016/j.tifs.2021.02.031
Gouic A.V.L., Harnedy P.A. & FfitzGerald. (2018). Bioactive Peptides from Fish Protein By-Products. In Bioactive Molecules in Food. SpringerNature. ISBN : 978-3-319-54528-8. Pp: 1-35.
Ho J.C.S., Rydström A., Trulsson M., Bålfors J., Storm P., Puthia M., Nadeem A. & Svanborg C. (2012). HAMLET: functional properties and therapeutic potential. Future Medicine. 8(10): 1301-1313. https://doi.org/10.2217/fon.12.122
Kato Y. & Sakamoto W. (2018). FtsH Protease in the Thylakoid Membrane: Physiological Functions and the Regulation of Protease Activity. Front in Plant Sciences. 20:9:855. https://doi.org/10.3389/fpls.2018.00855
Kavaliauskas D., Nissen P. & Knudsen C.R. (2012). The Busiest of All Ribosomal Assistants: Elongation Factor Tu. American Chemical Society. 51(13): 2642-2651. https://doi.org/10.1021/bi300077s
Kim S. & Kang K. (2011). Medicinal Effects of Peptides from Marine Microalgae. Advances in Food and Nutrition Research. 64: 313-323. https://doi.org/10.1016/b978-0-12-387669-0.00025-9
Kruger N.J. & Schaewen A.V. (2003). The oxidative pentose phosphate pathway: structure and organisation. Current Opinion in Plant Biology. 6(3): 236-246. https://doi.org/10.1016/s1369-5266(03)00039-6
Li Y., Aiello G., Fassi EMA., Boschin G., Bartolomei M., Bollati C., Roda G., Arnoldi A., Grazioso G. & Boschin G. (2021). Investigation of Chlorella pyrenoidosa Protein as a Source of Novel Angiotensin I-Converting Enzyme (ACE) and Dipeptidyl Peptidase-IV (DPP-IV) Inhibitory Peptides. Nutrients. 13(5): 1624-1624. https://doi.org/10.3390/nu13051624
Liu J. & Chen F. (2014). Biology and Industrial Applications of Chlorella: Advances and Prospects. Advances in Biochemical Engineering/Biotechnology. 1-35. https://doi.org/10.1007/10_2014_286
Lu W. & Chen H. (2003). Recent advances in LC-MS and LC-MS/MS for pesticide residue analysis. Journal of Chromatography A. 1000(1-2): 279-299.
Lu Y., Liu, L.N., Roston R., Soll J., & Gao H. (2020). Editorial: Structure and Function of Chloroplasts - Volume II. Frontiers Media. 11. https://doi.org/10.3389/fpls.2020.620152
Mohanty B.P., Mahanty A., Ganguly S., Sankar T., Chakraborty K., Anandan R., Paul B., Sarma D., Mathew S., Asha K.K., Behera B.K., Aftabuddin M., Debnath D., Vijayagopal P., Nimmagadda S., Akhtar M.S., Sahi N., Mitra T., Banerjee S. & Sharma, A P. (2014). Amino Acid Compositions of 27 Food Fishes and Their Importance in Clinical Nutrition. Hindawi Publishing Corporation. 2014, 1-7. https://doi.org/10.1155/2014/269797
Niazian M., Sadat-Noori S.A., Tohidfar M., Mortazavian S.M.M. & Sabbatini P. (2021). Betaine Aldehyde Dehydrogenase (BADH) vs. Flavodoxin (Fld): Two Important Genes for Enhancing Plants Stress Tolerance and Productivity. Frontiers in Plant Sciences. 1(12). https://doi.org/10.3389/fpls.2021.650215
Orusmurzaeva Z., Maslova A., Tambieva Z., Sadykova E., Askhadova P., Umarova K., Merzhoeva A., Albogachieva K., Ulikhanyan K., & Povetkin S N. (2022). Investigation of the chemical composition and physicochemical properties of Chlorella vulgaris biomass treated with pulsed discharges technology for potential use in the food industry. Potravinarstvo Slovak Journal of Food Sciences. 16: 777-789. https://doi.org/10.5219/1803
Pilon M., Abdel‐Ghany S.E., Hoewyk D.V., Ye H. & Pilon‐Smits E.A.H. (2006). Biogenesis of Iron-Sulfur Cluster Proteins in Plastids. Genetic Engineering. 101-117. https://doi.org/10.1007/0-387-25856-6_7
Przybyla‐Toscano J., Roland M., Rellán‐Álvarez R., Couturier J. & Rouhier N. (2018). Roles and maturation of iron–sulfur proteins in plastids. Journal of Bioorganic Chemistry. 23(4): 545-566. https://doi.org/10.1007/s00775-018-1532-1
Rendón-Castrillón L., Ramírez-Carmona M., Ocampo-López C. & Giraldo-Aristizabal R. (2021). Evaluation of the operational conditions in the production and morphology of Chlorella sp. Brazilian Journal of Biology. 81(1), 202-209. https://doi.org/10.1590/1519-6984.228874
Reverter M., Tapissier-Bontemps N., Lecchini D., Banaigs B. & Sasal P. (2014). Use of plant extracts in fish aquaculture as an alternative to chemotherapy: Current status and future perspectives. Aquaculture. 433(20): 50-61. https://doi.org/10.1016/j.aquaculture.2014.05.048
Rizwan M., Mujtaba G., Memon S A., Lee K. & Rashid N. (2018). Exploring the potential of microalgae for new biotechnology applications and beyond: A review. Renewable and Sustainable Energy Reviews. 92: 394-404. https://doi.org/10.1016/j.rser.2018.04.034
Ryu B. & Kim S. (2013). Isolation and Biological Activities of Peptides from Marine Microalgae by Fermentation. Marine Proteins and Peptides: Biological Activities and Applications. 441-448. https://doi.org/10.1002/9781118375082.ch21
Safi C., Zebib B., Merah O., Pontalier P., & Vaca‐García C. (2014). Morphology, composition, production, processing and applications of Chlorella vulgaris: A review. Renewable and Sustainable Energy Reviews. 35: 265-278. https://doi.org/10.1016/j.rser.2014.04.007
Saha A.K.A. & Singh I.S.B. (2018). Concurrent Expression and Regulation of Genes Involved in Carbon and Nitrogen Metabolism in Relation with Nitrogen Use Efficiency.International Journal of Current Microbiology and Applied Sciences. 7(07): 1894-1909. https://doi.org/10.20546/ijcmas.2018.707.225
Senevirathne M. & Kim S. (2012). Development of Bioactive Peptides from Fish Proteins and Their Health Promoting Ability. Advances Food and Nutrition Research. 65: 235-248. https://doi.org/10.1016/b978-0-12-416003-3.00015-9
Sjuts I., Soll J. & Bölter B. (2017). Import of Soluble Proteins into Chloroplasts and Potential Regulatory Mechanisms. Frontiers in Plant Sciences. 8(8): 168. https://doi.org/10.3389/fpls.2017.00168
Taylor M.W., Barr N.G., Grant C.M., & Rees T.A.V. (2006). Changes in amino acid composition of Ulva intestinalis (Chlorophyceae) following addition of ammonium or nitrate. Phycologia. https: //doi.org/10.2216/05-15.1
Tejano L.A., Peralta J.P., Yap E.E.S., Panjaitan F.C.A. & Chang Y.W. (2019). Prediction of Bioactive Peptides from Chlorella sorokiniana Proteins using Proteomic Techniques in Combination with Bioinformatics Analyses. International Journal of Molecular Sciences. 20(7): 1786. DOI: 10.3390/ijms20071786
Timko M.P. (2006). Pigment Biosynthesis: Chlorophylls, Heme, and Carotenoids. In Pigment Biosynthesis: Chlorophylls, Heme, and Carotenoids. Springer Science Business Media. 377-414. https://doi.org/10.1007/0-306-48204-5_20
Wang, X., & Zhang, X. (2012, December 1). Optimal extraction and hydrolysis of Chlorella pyrenoidosa proteins.Bioresource Technology. 126: 307-313. https://doi.org/10.1016/j.biortech.2012.09.059
Wu S., Liu H., Li S., Sun H., He X., Huang Y. & Long H. (2021). Transcriptome Analysis Reveals Possible Immunomodulatory Activity Mechanism of Chlorella sp. Exopolysaccharides on RAW264.7 Macrophages. Marine Drugs. https://www.mdpi.com/1660-3397/19/4/217/pdf
Zhang Y., Zhang A., Li X. & Lu, C. (2020). The Role of Chloroplast Gene Expression in Plant Responses to Environmental Stress. International Journal of Molecular Sciences. 21(17): 6082-6082. https://doi.org/10.3390/ijms21176082.
License
Copyright (c) 2024 Nur Maulida Safitri, Wiga Alif Violando, Achmad Suhermanto, Riza Rizkiah, Iman Mukhaimin, Taufik Hadi Ramli, Asthervina Widyastami Puspitasari, Atiqoh Zummah
This work is licensed under a Creative Commons Attribution 4.0 International License.
Jurnal Biologi Tropis is licensed under a Creative Commons Attribution 4.0 International License.
The copyright of the received article shall be assigned to the author as the owner of the paper. The intended copyright includes the right to publish the article in various forms (including reprints). The journal maintains the publishing rights to the published articles.
Authors are permitted to disseminate published articles by sharing the link/DOI of the article at the journal. Authors are allowed to use their articles for any legal purposes deemed necessary without written permission from the journal with an acknowledgment of initial publication to this journal.