The Relathionship Between CD31 Immunohistochemical Expression and Meningioma Grading Differences
Authors
Nanggi Qoriatul Febriana , Rohadi Muhammad Rosyidi , Januarman Januarman , Adelia Riezka Rahim , Lale Maulin PrihatinaDOI:
10.29303/jbt.v25i1.8539Published:
2025-03-09Issue:
Vol. 25 No. 1 (2025): Januari - MaretKeywords:
CD31/PECAM-1, immunohistochemistry, meningioma gradingArticles
Downloads
How to Cite
Downloads
Metrics
Abstract
The proper management of meningioma patients requires a definitive diagnosis of the meningioma grade by examining the expression of CD31 in tumor blood vessels using immunohistochemical staining. This study aims to determine the relationship between CD31 immunohistochemical expression and the grading differences of meningiomas. Nine paraffin block samples from the surgical tissue of meningioma patients were used, with three samples each from grade I, grade II, and grade III meningiomas. Immunohistochemical staining for CD31 was then performed on each meningioma slide, and the samples were observed under a binocular light microscope with 200x magnification. The results showed CD31 expression in grade I as 90%, 40%, and 80%; in grade II as 80%, 80%, and 60%; and in grade III as 40%, 20%, and negative (0%). The statistical test results of this study indicate a strong negative correlation between CD31 immunohistochemical expression and meningioma grading differences. The higher the meningioma grade, the lower the CD31 expression found, and vice versa. This research is important to assist neurosurgeons in the proper management of meningioma patients, potentially preventing poor prognosis and complications. It is hoped that future studies will analyze the relationship between CD31 immunohistochemical expression with subtypes of each meningioma grade and their respective locations.
References
Barresi, V. (2011). Angiogenesis in meningiomas. In Brain Tumor Pathology (Vol. 28, Issue 2, pp. 99–106).
DOI : https://doi.org/10.1007/s10014-010-0012-2
Baxter, D. S., Orrego, A., Rosenfeld, J. V., & Mathiesen, T. (2014). An audit of immunohistochemical
marker patterns in meningioma. Journal of Clinical Neuroscience, 21(3), 421–426. DOI:
https://doi.org/10.1016/j.jocn.2013.06.008
Biswas, S., Charlesworth, P. J., Dh Turner, G., et al. (2012). CD31 Angiogenesis and Combined Expression
of HIF-1α & HIF-2α are Prognostic in Primary Clear-Cell Renal Cell Carcinoma (CC-RCC), but HIFα
Transcriptional Products are Not: Implications for Antiangiogenic Trials and HIFα Biomarker Studies
in Primary CC-RCC * SB and PJSC are Joint first authors Downloaded from.
http://carcin.oxfordjournals.org/
Boulagnon-Rombi, C., Fleury, C., Fichel, C., et al. (2017). Immunohistochemical approach to the differential
diagnosis of meningiomas and their mimics. Journal of Neuropathology and Experimental Neurology,
(4), 289–298. DOI : https://doi.org/10.1093/jnen/nlx008
Brady, J., Neal, J., Sadakar, N., & Gasque, P. (2004). Human Endosialin (Tumor Endothelial Marker 1) Is
Abundantly Expressed in Highly Malignant and Invasive Brain Tumors. In Journal of Neuropathology
and Experimental Neurology (Vol. 63). https://academic.oup.com/jnen/article/63/12/1274/2916540
Buerki, R. A., Horbinski, C. M., Kruser, T., et al. (2018). An overview of meningiomas. In Future Oncology,
(21), 2161–2177. Future Medicine Ltd. https://doi.org/10.2217/fon-2018-0006
Delisser, H. M., Christofidou-Solomidou, M., Strieter, R. M., Burdick, M. D., Robinson, C. S., Wexler, R.
S., Kerr, J. S., Garlanda, C., Merwin, J. R., Madri,’w, J. A., Albelda, S. M., & Milano, M. N. (1997).
Involvement of Endothelial PECAM-1/CD31 in Angiogenesis. In American Journal of Pathology (Vol.
, Issue 3).
De Divitiis, E., Esposito, F., Cappabianca, P., & Cavallo, L. M. (2008).Tuberculum Sellae Meningiomas :
High Route or Low Route? A Series of 51 Consecutive Cases Clinical Studies. Neurosurgery, 62(3),
–563. https://doi.org/10.1227/01.NEU.0000297113.72625.D1
Echalier, E. L., & Subramanian, P. S. (2021). Meningiomas of the Planum Sphenoidale and Tuberculum
Sella. In Journal of Neurological Surgery, Part B: Skull Base (Vol. 82, Issue 1, pp. 72–80). Thieme
Medical Publishers, Inc. https://doi.org/10.1055/s-0040-1722703
Garcia-Bustos, V. (2019). CD31 or CD34: which is the best marker for evaluating microvascular density in
renal cell carcinoma? Histology and Histopathology From Cell Biology to Tissue Engineering, 34.
https://doi.org/10.13140/RG.2.2.24951.98729
Jennings, R. N., Miller, M. A., & Ramos-Vara, J. A. (2012). Comparison of CD34, CD31, and Factor VIIIRelated Antigen Immunohistochemical Expression in Feline Vascular Neoplasms and CD34 Expression
in Feline Nonvascular Neoplasms. Veterinary Pathology, 49(3), 532–537.
https://doi.org/10.1177/0300985811429312
Khattab, A. Z. M., Ahmed, M. I., Fouad, M. A., & Essa, W. A. (2009). Significance of p53 and CD31 in
astrogliomas. Medical Oncology, 26(1), 86–92. https://doi.org/10.1007/s12032-008-9094-7
Kim, S. W., Roh, J., & Park, C. S. (2016). Immunohistochemistry for pathologists: Protocols, pitfalls, and
tips. In Journal of Pathology and Translational Medicine (Vol. 50, Issue 6, pp. 411–418). Seoul
National University. https://doi.org/10.4132/jptm.2016.08.08
Maggio, I., Franceschi, E., Tosoni, A., Nunno, V. Di, Gatto, L., Lodi, R., & Brandes, A. A. (2021).
Meningioma: Not always a benign tumor. A review of advances in the treatment of meningiomas. CNS
Oncology, 10(2). https://doi.org/10.2217/cns-2021-0003
Magill, S. T., & McDermott, M. W. (2020). Tuberculum sellae meningiomas. In Handbook of Clinical
Neurology (Vol. 170, pp. 13–23). Elsevier B.V. https://doi.org/10.1016/B978-0-12-822198-3.00024-0
Majchrzak, K., Kaspera, W., Szymaś, J., Bobek-Billewicz, B., Hebda, A., & Majchrzak, H. (2013). Markery
angiogenezy (CD31, CD34, rCBV) w utkaniu wysoko zróżnicowanych glejaków mózgu oraz ich
wartość rokownicza. Neurologia i Neurochirurgia Polska, 47(4), 325–331.
https://doi.org/10.5114/ninp.2013.36757
Miettinen, M. (2014). Immunohistochemistry of soft tissue tumours - review with emphasis on 10 markers.
In Histopathology (Vol. 64, Issue 1, pp. 101–118). https://doi.org/10.1111/his.12298
Ogasawara, C., Philbrick, B. D., & Adamson, D. C. (2021). Meningioma: A review of epidemiology,
pathology, diagnosis, treatment, and future directions. In Biomedicines (Vol. 9, Issue 3). MDPI AG.
https://doi.org/10.3390/biomedicines9030319
Pusztaszeri, M. P., Seelentag, W., & Bosman, F. T. (2006). Immunohistochemical expression of endothelial
markers CD31, CD34, von Willebrand factor, and Fli-1 in normal human tissues. Journal of
Histochemistry and Cytochemistry, 54(4), 385–395. https://doi.org/10.1369/jhc.4A6514.2005
Ramos-Vara, J. A., Miller, M. A., Gilbreath, E., & Patterson, J. S. (2010). Immunohistochemical detection
of CD34, E-cadherin, claudin-1, glucose transporter 1, laminin, and protein gene product 9.5 in 28
canine and 8 feline meningiomas. Veterinary Pathology, 47(4), 725–737.
https://doi.org/10.1177/0300985810364528
Schlüter, A., Weller, P., Kanaan, O., Nel, I., Heusgen, L., Höing, B., Haßkamp, P., Zander, S., Mandapathil,
M., Dominas, N., Arnolds, J., Stuck, B. A., Lang, S., Bankfalvi, A., & Brandau, S. (2018). CD31 and
VEGF are prognostic biomarkers in early-stage, but not in late-stage, laryngeal squamous cell
carcinoma. BMC Cancer, 18(1). https://doi.org/10.1186/s12885-018-4180-5
Sidabutar, R., Hermanto, Y., Sutiono, A. B., Naibaho, G., & Faried, A. (2024). Surgical treatment of
tuberculum sellae meningioma: A retrospective review of single institutional experience. Surgical
Neurology International, 15, 440. https://doi.org/10.25259/SNI_685_2024
Taskinen, M., Jantunen, E., Kosma, V. M., Bono, P., Karjalainen-Lindsberg, M. L., & Leppä, S. (2010).
Prognostic impact of CD31-positive microvessel density in follicular lymphoma patients treated with
immunochemotherapy. European Journal of Cancer, 46(13), 2506–2512.
https://doi.org/10.1016/j.ejca.2010.06.014
Tubre, T., Hacking, S., Alexander, A., Brickman, A., Delalle, I., Elinzano, H., & Donahue, J. E. (2022).
Prostate-Specific Membrane Antigen Expression in Meningioma: A Promising Theranostic Target.
Journal of Neuropathology and Experimental Neurology, 81(12), 1008–1017.
https://doi.org/10.1093/jnen/nlac089
Yao, X., Qian, C. N., Zhang, Z. F., Tan, M. H., Kort, E. J., Yang, X. J., Resau, J. H., & Teh, B. T. (2007).
Two distinct types of blood vessels in clear cell renal cell carcinoma have contrasting prognostic
implications. Clinical Cancer Research, 13(1), 161–169. https://doi.org/10.1158/1078-0432.CCR-06-
Yilmazer, D., Han, Ü., & Önal, B. (2007). A comparison of the vascular density of VEGF expression with
microvascular density determined with CD34 and CD31 staining and conventional prognostic markers
in renal cell carcinoma. International Urology and Nephrology, 39(3), 691–698.
https://doi.org/10.1007/s11255-006-9123-4
Zhang, T., Zhang, L., Gao, Y., Wang, Y., Liu, Y., Zhang, H., Wang, Q., Hu, F., Li, J., Tan, J., Wang, D. D.,
Gires, O., Lin, P. P., & Li, B. (2021). Role of aneuploid circulating tumor cells and CD31+ circulating
tumor endothelial cells in predicting and monitoring anti-angiogenic therapy efficacy in advanced
NSCLC. Molecular Oncology, 15(11), 2891–2909. https://doi.org/10.1002/1878-0261.13092
License
Copyright (c) 2025 Nanggi Qoriatul Febriana, Rohadi Muhammad Rosyidi, Januarman Januarman, Adelia Riezka Rahim, Lale Maulin Prihatina

This work is licensed under a Creative Commons Attribution 4.0 International License.
Jurnal Biologi Tropis is licensed under a Creative Commons Attribution 4.0 International License.
The copyright of the received article shall be assigned to the author as the owner of the paper. The intended copyright includes the right to publish the article in various forms (including reprints). The journal maintains the publishing rights to the published articles.
Authors are permitted to disseminate published articles by sharing the link/DOI of the article at the journal. Authors are allowed to use their articles for any legal purposes deemed necessary without written permission from the journal with an acknowledgment of initial publication to this journal.