Profile and Antibiotic Assay of Cefotaxime-Resistant Lactic Acid Bacteria from The Caecum of Broiler Chickens
Authors
Rosyunita Rosyunita , Eustachius Hagni Wardoyo , Adelia Riezka Rahim , Hasbi NurmiDOI:
10.29303/jbt.v24i1b.7850Published:
2024-12-07Issue:
Vol. 24 No. 1b (2024): Special IssueKeywords:
Antibiotic, chicken, cefotaxime, lactic acid bacteria.Articles
Downloads
How to Cite
Downloads
Metrics
Abstract
A health problem associated with increasing antibiotic resistance, the silent pandemic kills 700,000 people a year, mostly in Asia and Africa. In the case of probiotic or lactic acid bacteria, antibiotic resistance can enhance nutrient absorption in the host and prevent the colonization of pathogenic bacteria. To address this, the WHO has suggested using the One Health Tricycle strategy, which entails monitoring people, the environment, and animals. One facet of this investigation is animals, specifically chickens. This study aims to identify the antibiotic resistance and profile of cefotaxime-resistant lactic acid bacteria (LAB) from broiler chicken cecum. Isolating LAB from the chicken's cecum is one of the techniques employed. After calculating the prevalence of resistant bacteria, the bacteria were characterized as macroscopic, microscopic, and biochemically. Testing the antibiotics against LAB was the next stage. According to the study's findings, the bacterial colonies were tiny to medium-sized, white, spherical, and convex, with complete margins. Gram-positive bacilli were identified by Gram staining. The findings of the biochemical tests were negative for oxidative and catalase, positive for glucose, and negative for other biochemical tests. According to antibiotic sensitivity testing, LAB was 90.9% resistant to Vancomycin, 63.63% to Chloramphenicol, and 100% to Erythromycin, Aztreonam, and Ceftriaxone. According to these findings, LAB in the chicken caecum has become resistant to several antibiotics. To give a better picture of the balance between pathogenic and helpful bacteria in the chicken cecum, more LAB testing against pathogenic bacteria is required.
References
Abid, S., Farid, A., Abid, R., Rehman, M. U., Alsanie, W. F., Alhomrani, M., Alamri, A. S., Basheeruddin Asdaq, S. M., Hefft, D. I., Saqib, S., Muzammal, M., Morshedy, S. A., Alruways, M. W., & Ghazanfar, S. (2022). Identification, Biochemical Characterization, and Safety Attributes of Locally Isolated Lactobacillus fermentum from Bubalus bubalis (buffalo) Milk as a Probiotic. Microorganisms, 10(5). DOI: https://doi.org/10.3390/microorganisms10050954
Abriouel, H., Casado Muñoz, M. D. C., Lavilla Lerma, L., Pérez Montoro, B., Bockelmann, W., Pichner, R., Kabisch, J., Cho, G., Franz, C. M., Gálvez, A., & Benomar, N. (2015). New insights in antibiotic resistance of Lactobacillus species from fermented foods. Food Research International, 78, 465-481. DOI: https://doi.org/10.1016/j.foodres.2015.09.016
Apajalahti, J., & Vienola, K. (2016). Interaction between chicken intestinal microbiota and protein digestion. Animal Feed Science and Technology, 221, 323-330. DOI: https://doi.org/10.1016/j.anifeedsci.2016.05.004
Ary, E., Dadrasnia, A., Ameen, F., Alwakeel, S., & Ismail, S. (2021). Antimicrobial Screening of Lactic Acid Bacteria Isolated from Fermented Milk Buffalo (Dadih). International journal of scientific and research publications, 11, 70-80. DOI: https://doi.org/10.29322/IJSRP.11.04.2021.P11209
Chen, S., Luo, S., & Yan, C. (2021). Gut Microbiota Implications for Health and Welfare in Farm Animals: A Review. Animals: an open access journal from MDPI, 12(1), 93. DOI: https://doi.org/10.3390/ani12010093
Dec, M., Urban-Chmiel, R., Stępień-Pyśniak, D., & Wernicki, A. (2017). Assessment of antibiotic susceptibility in Lactobacillus isolates from chickens. Gut Pathog, 9(54), 1-26 DOI: https://doi.org/10.1186/s13099-017-0203-z
Dowarah, R., Verma, A. K., Agarwal, N., Singh, P., & Singh, B. R. (2018). Selection and characterization of probiotic lactic acid bacteria and its impact on growth, nutrient digestibility, health and antioxidant status in weaned piglets. PloS one, 13(3), 1-24. DOI: https://doi.org/10.1371/journal.pone.0192978
Du, C., & Webb, C. (2010). Cellular Systems. Comprehensive Biotechnology (Second Edition), 2, 11-23. DOI: https://doi.org/10.1016/B978-0-08-088504-9.00080-5
Erginkaya, Z., Turhan, E. U., & Tatlı, D. (2018). Determination of antibiotic resistance of lactic acid bacteria isolated from traditional Turkish fermented dairy products. Iranian journal of veterinary research, 19(1), 53–56. http://www.ncbi.nlm.nih.gov/pmc/articles/pmc5960774/
Fiscarelli, E. V. (2019). The colours of bacteria and fungi. Microbiologia Medica, 34(2). https://doi.org/10.4081/mm.2019.8631
Gueimonde, M., Sánchez, B. G., de Los Reyes-Gavilán, C., & Margolles, A. (2013). Antibiotic resistance in probiotic bacteria. Front Microbiol, 18(4), 202. DOI: https://doi.org/10.3389/fmicb.2013.00202
Haryani, Y., Halid, N. A., Guat, G. S., Nor-Khaizura, M. A. R., Hatta, M. A. M., Sabri, S., Radu, S., & Hasan, H. (2023). High prevalence of multiple antibiotic resistance in fermented food-associated lactic acid bacteria in Malaysia. Food Control, 147, 109558. DOI: https://doi.org/10.1016/j.foodcont.2022.109558
Hayek, S., & Ibrahim, S. (2013). Current Limitations and Challenges with Lactic Acid Bacteria: A Review. Food and Nutrition Sciences, 4(11), 2013, 73-87. DOI: 10.4236/fns.2013.411A010.
Hébert, E. M., Raya, R. R., & Giori, G. S. (2004). Nutritional Requirements of Lactobacillus delbrueckii subsp. lactis in a Chemically Defined Medium. Current Microbiology, 49(5), 341-345. DOI:
http://dx.doi.org/10.1007/s00284-004-4357-9
Johansen, V. E., Catón, L., Hamidjaja, R., Oosterink, E., Wilts, B. D., Rasmussen, T. S., Sherlock, M. M., Ingham, C. J., & Vignolini, S. (2018). Genetic manipulation of structural color in bacterial colonies. Proceedings of the National Academy of Sciences of the United States of America, 115(11), 2652-2657. DOI: https://doi.org/10.1073/pnas.1716214115
Jose, N. M., Bunt, C. R., & Hussain, M. A. (2015). Implications of antibiotic resistance in probiotics. Food Rev Int, 31(1), 52–62. DOI: https://doi.org/10.1080/87559129.2014.961075
Kousar, S., Rehman, N., Javed, A., Hussain, A., Naeem, M., Masood, S., Ali, H. A., Manzoor, A., Khan, A. A., Akrem, A., Iqbal, F., Zulfiqar, A., Jamshaid, M. B., Waqas, M., Waseem, A., & Saeed, M. Q. (2021). Intensive Poultry Farming Practices Influence Antibiotic Resistance Profiles in Pseudomonas aeruginosa Inhabiting Nearby Soils. Infect Drug, 14, 4511-4516. DOI: https://doi.org/10.2147/idr.s324055
Lechiancole, T., Ricciardi, A., & Parente, E. (2002). Optimization of Media and Fermentation Conditions for the Growth of Lactobacillus sakei. Annals of Microbiology, 52, 257-274.
Li, X., Li, W., Zhao, L., Li, Y., He, W., Ding, K., & Cao, P. (2024). Characterization and Assessment of Native Lactic Acid Bacteria from Broiler Intestines for Potential Probiotic Properties. Microorganisms, 12(4), 749. DOI: https://doi.org/10.3390/microorganisms12040749
Michael, G. B., Kaspar, H., Siqueira, A. K., de Freitas Costa, E., Corbellini, L. G., Kadlec, K., & Schwarz, S. (2017). Extended-spectrum β-lactamase (ESBL)-producing Escherichia coli isolates collected from diseased food-producing animals in the GERM-Vet monitoring program 2008-2014. Veterinary microbiology, 200, 142–150. DOI: https://doi.org/10.1016/j.vetmic.2016.08.023
Padda, I. S., & Nagalli S. Cefotaxime. [Updated (2023). In: StatPearls [Internet]. Tresure Island (FL): StatPearlsPublishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NP
Penha Filho, R. A., Díaz, S. J., Fernando, F. S., Chang, Y. F., Andreatti Filho, R. L., & Berchieri Junior, A. (2015). Immunomodulatory activity and control of Salmonella Enteritidis colonization in the intestinal tract of chickens by Lactobacillus based probiotic. Vet Immunol Immunopathol, 167(1-2), 64-9. https://doi.org/10.1016/j.vetimm.2015.06.006
Ojha, A. K., Shah, N. P., Mishra, V., Emanuel, N., & Taneja, N. K. (2023). Prevalence of antibiotic resistance in lactic acid bacteria isolated from traditional fermented Indian food products. Food science and biotechnology, 32(14), 2131–2143. DOI: https://doi.org/10.1007/s10068-023-01305-1
Rahayu, H. M., & Setiadi, A. E. (2023). Isolation and Characterization of Indigenous Lactic Acid Bacteria from Pakatikng Rape, Dayak’s Traditional Fermented Food. Jurnal Penelitian Pendidikan IPA, 9(2), 920–925. DOI: https://doi.org/10.29303/jppipa.v9i2.2801
Sharma, C., Gulati, S., Thakur, N., Singh, B. P., Gupta, S., Kaur, S., Mishra, S. K., Puniya, A. K., Singh Gill, J. P., & Panwar, H. (2017). Antibiotic sensitivity pattern of indigenous lactobacilli isolated from curd and human milk samples. 3 Biotech, 7(1). DOI: https://doi.org/10.1007/s13205-017-0682-0
Sirisopapong, M., Shimosato, T., Okrathok, S., & Khempaka, S. (2023). Assessment of lactic acid bacteria isolated from the chicken digestive tract for potential use as poultry probiotics. Animal Bioscience, 36(8), 1209-1220. DOI: https://doi.org/10.5713/ab.22.0455
Tan, Z., Luo, L., Wang, X., Wen, Q., Zhou, L., & Wu, K. (2019). Characterization of the cecal microbiome composition of Wenchang chickens before and after fattening. PloS one, 14(12). DOI: https://doi.org/10.1371/journal.pone.0225692
Tian, C., Wang, L., Liu, M., Liu, J., Qiu, M., & Chen, Y. (2024). Isolation and Identification of Chicken-Derived Lactic Acid Bacteria: In Vitro Probiotic Properties and Antagonistic Effects against Salmonella pullorum, Staphylococcus aureus, and Escherichia coli. Microorganisms, 12(4), 795. DOI: https://doi.org/10.3390/microorganisms12040795
Van Boeckel, T. P., Glennon, E. E., Chen, D., Gilbert, M., Robinson, T. P., Grenfell, B. T., Levin, S. A., Bonhoeffer, S., & Laxminarayan, R. (2017). Reducing antimicrobial use in food animals. Science, 357(6358), 1350-1352. DOI: https://doi.org/10.1126/science.aao1495
License
Copyright (c) 2024 Rosyunita Rosyunita, Eustachius Hagni Wardoyo, Adelia Riezka Rahim, Hasbi Nurmi
This work is licensed under a Creative Commons Attribution 4.0 International License.
Jurnal Biologi Tropis is licensed under a Creative Commons Attribution 4.0 International License.
The copyright of the received article shall be assigned to the author as the owner of the paper. The intended copyright includes the right to publish the article in various forms (including reprints). The journal maintains the publishing rights to the published articles.
Authors are permitted to disseminate published articles by sharing the link/DOI of the article at the journal. Authors are allowed to use their articles for any legal purposes deemed necessary without written permission from the journal with an acknowledgment of initial publication to this journal.