Phytochemical Profiling of Tampoi (Baccaurea macrocarpa (Miq.) Mull. Arg.) Leaves Using Liquid Chromatography-Tandem Mass Spectrometry
Authors
Agnes Della Lumban Gaol , SujarwatiDOI:
10.29303/jbt.v25i3.8964Published:
2025-07-09Issue:
Vol. 25 No. 3 (2025): Juli-SeptemberKeywords:
Baccaurea macrocarpa, LCMS/MS, phytochemical, Tampoi.Articles
Downloads
How to Cite
Downloads
Metrics
Abstract
Tampoi leaves (Baccaurea macrocarpa (Miq.) Mull. Arg.) have been reported to contain a diverse array of phytochemicals associated with various biological activities, including antioxidant and antibacterial effects, as well as the enhancement of erythrocyte and hemoglobin levels in anemic mouse models. This study aimed to comprehensively characterize the phytochemical profile of tampoi leaves to establish a foundation for elucidating the mechanisms underlying their biological activities. Extraction was conducted using a solid phase method with methanol as the solvent. Phytochemical profiling was performed using Liquid Chromatography Tandem Mass Spectrometry (LCMS/MS) in positive ionization mode, and data analysis was carried out using MassLynx software. The analysis revealed the presence of 39 phytochemical compounds in the methanolic extract of tampoi leaves. These compounds were classified into 12 major groups: coumarin, amino acid, glycosides, flavonoids, inositol, tannin, terpenoids, jasmonic acids, alkaloids, saponin, phenols, and fatty acids. Among these, terpenoids constituted the most abundant class, comprising nine compounds. Vitexin and linolenic acid exhibited the highest chromatographic peaks, indicating relatively high abundances compared to other constituents in the extract. The phytochemical profile of tampoi leaves offers a valuable basis for understanding the interactions between bioactive compounds and biological targets through in silico approaches, thereby supporting the development of phytopharmaceutical candidates.
References
Allaoui, E., Ahmadi, H., Abdouni, A., Dira, I., El Bastrioui, M., Bouhrim, M., & Haboubi, K. (2024). Trends and Insights in Medicinal Plant Extract Research: A Ten-Year Bibliometric and Visualization Study. Horticulturae, 10(11), 1163. https://doi.org/10.3390/horticulturae10111163
Alzahrani, H., Alghamdi, A. (2022). In Silico Molecular Docking Analysis of the Potential Role of Reticuline and Coclaurine as Anti-Colorectal Cancer Alkaloids. J Pharm Res Int, 34(3), 33-42. 10.9734/JPRI/2022/v34i1A35344
Allaoui, E., Ahmadi, H., Abdouni, A., Dira, I., El Bastrioui, M., Bouhrim, M., & Haboubi, K. (2024). Trends and Insights in Medicinal Plant Extract Research: A Ten-Year Bibliometric and Visualization Study. Horticulturae, 10(11), 1163. https://doi.org/10.3390/horticulturae10111163
Chen, J., Wu, F., Wang, H., Guo, C., Zhang, W., Luo, P., & Huang, J. (2023). Identification of Key Taste Components in Baccaurea ramiflora Lour. Fruit Using Non-Targeted Metabolomics. Food Science and Human Wellness, 12(1), 94-101. https://doi.org/10.1016/j.fshw.2022.07.027
Chourasia, M., Koppula, P. R., Battu, A., Ouseph, M. M., & Singh, A. K. (2021). EGCG, a Green Tea Catechin, as a Potential Therapeutic Agent for Symptomatic and Asymptomatic SARS-CoV-2 Infection. Molecules, 26(5), 1200. https://doi.org/10.3390/molecules26051200
Fadilla, V. (2023). Efek Ekstrak Daun Tampoi (Baccaurea macrocarpa (Miq) Mull. Arg) Terhadap Hematologi Mencit (Mus musculus L.) Anemia. Universitas Riau
Gqamana, P. P., & Zhang, Y. V. (2023). High-Throughput Comprehensive Quantitative LC-MS/MS Analysis of Common Drugs and Metabolites (62 Compounds) in Human Urine. In Clinical Applications of Mass Spectrometry in Drug Analysis: Methods and Protocols (pp. 215-227). https://doi.org/10.1007/978-1-0716-3541-4_20
Haque, F., Nashar, A., Akbor, S., Alfaifi, M., Bappi, H., & Chowdhury, K. (2024). Antiinflammatory Activity of D-Pinitol Possibly Through Inhibiting COX-2 Enzyme: in Vivo and in Silico Studies. Frontiers in Chemistry, 12(8), 1-12. https://doi.org/10.3389/fchem.2024.1366844
Hu, W. H., Dai, D. K., Zheng, B. Z. Y., Duan, R., Chan, G. K. L., Dong, T. T. X., Tsim, K. W. K. (2021). The Binding of Kaempferol-3-O-Rutinoside to Vascular Endothelial Growth Factor Potentiates Anti-Inflammatory Efficiencies in Lipopolysaccharide-Treated Mouse Macrophage RAW264. 7 Cells. Phytomedicine, 80, 153400. https://doi.org/10.1016/j.phymed.2020.153400
Husnunnisa, H., Hartati, R., Mauludin, R., & Insanu, M. (2022). A review of the Phyllanthus Genus Plants: Their Phytochemistry, Traditional Uses, and Potential Inhibition of Xanthine Oxidase. Pharmacia, 69(3), 681-687. 10.3897/pharmacia.69.e87013
Lee, J. H., Mohan, C. D., Shanmugam, M. K., Rangappa, S., Sethi, G., Siveen, K. S., & Ahn, K. S. (2020). Vitexin Abrogates Invasion and Survival of Hepatocellular Carcinoma Cells Through Targeting STAT3 Signaling Pathway. Biochimie, 175, 58-68. https://doi.org/10.1016/j.biochi.2020.05.006
Lei, Y., Deng, X., Zhang, Z., & Chen, J. (2023). Natural product procyanidin B1 as an antitumor drug for effective therapy of colon cancer. ExpErimEntal and thErapEutic mEdicinE, 26(5), 506. https://doi.org/10.3892/etm.2023.12205
Liu, W., & Park, S. W. (2021). 12-oxo-Phytodienoic Acid: a Fuse and/or Switch of Plant Growth and Defense Responses. Frontiers in Plant Science, 12, 724079. https://doi.org/10.3389/fpls.2021.724079
Mann, S., Sharma, A., Biswas, S., & Gupta, K. (2015). Identification and Molecular Docking Analysis of Active Ingredients with Medicinal Properties from Edible Baccaurea sapida. Bioinformation, 11(9), 437-449. https://doi.org/10.6026/97320630011437
Mohan, C., & Devi, S. (2024). LC-MS and HPTLC Profile of Crude Ethanol Extract of Plant Michelia champaca Linn. Pharmacognosy Research, 16(3). 10.5530/pres.16.3.59
Putri, M. A. H., Tilarso, D., & Sari, T. A. (2025). Analisis Profil Senyawa Metabolit Sekunder Ekstrak Daun Cempedak (Artocarpus integer) Dengan Metode Spektrofotometer UV-Vis dan LC-MS: Analysis Of Secondary Metabolites Compound Profile Of Cempedak Leaf Extract (Artocarpus integer) Using Uv-Vis Spectrophotometer And LC-MS Methods. Media Farmasi, 21(1), 63-72. https://doi.org/10.32382/mf.v21i1.975
Ramdhani, D., & Kusuma, S. A. F. (2021). Anticancer Activity of Santonin by Molecular Docking Method. World Journal of Pharmaceutical Research, 10(8),953-960. 10.20959/wjpr20218-20859
Remigante, A., Spinelli, S., Basile, N., Caruso, D., Falliti, G., Dossena, S., & Morabito, R. (2022). Oxidation Stress as a Mechanism of Aging in Human Erythrocytes: Protective Effect of Quercetin. International Journal of Molecular Sciences 23(14):77-87. https://doi.org/10.3390/ijms23147781
Shi, Y., Chen, X., Liu, J., Fan, X., Jin, Y., Gu, J., & Wang, C. (2021). Isoquercetin Improves Inflammatory Response in Rats Following Ischemic Stroke. Frontiers in neuroscience, 15, 555543. https://doi.org/10.3389/fnins.2021.555543
Silva, J., Alves, C., Martins, A., Susano, P., Simões, M., Guedes, M., & Pedrosa, R. (2021). Loliolide, a New Therapeutic Option for Neurological Diseases in Vitro Neuroprotective and Anti-Inflammatory Activities of a Monoterpenoid Lactone Isolated from Codium tomentosum. International Journal of Molecular Sciences, 22(4), 1888. https://doi.org/10.3390/ijms22041888
Singh, M., & Shukla, M. K. (2023). Pharmacologically Active Phytochemicals in Common Medicinal Plants-A Review. Flora And Fauna, 29(2), 239-244. https://doi.org/10.33451/florafauna.v29i2pp239-244
Sorapalli, S. K., Kagitha, K. B., Doddi, N. S., Alla, M., Nagidi, M., & Gope, E. R. (2024). A Review of Liquid Chromatography-Mass Spectrometry and its Applications in Chemical Analysis. Journal of Pharma Insights and Research, 2(6), 025-032. https://doi.org/10.69613/gre1zt18
Sujarwati, Isda, MN., Rahmadhani, DT., & Rohmah, U. (2023). Phytochemical Screening and Antioxidant Activity of Tampoi Leaves (Baccaurea macrocarpa (Miq.) Mull. Arg) by Leaf Age and Solvent Type. Jurnal Sains Natural, 13(3), 126- 133. https://doi.org/10.31938/jsn.v13i3.430
Syarpin, S., Permatasari, S., & Pujianto, D.A. (2023). Analysis of Phytochemical Constituents and Antioxidant Activity from the Fractions of Luvunga Sarmentosa Root Extract Using LCMS/MS. Biodiversitas Journal of Biological Diversity, 24(2), 733-740. https://doi.org/10.13057/biodiv/d240208
Vila, A., Fleming, J., Kris-Etherton, P., & Ros, E. (2022). Impact of α-linolenic acid, the vegetable ω-3 fatty acid, on cardiovascular disease and cognition. Advances in nutrition, 13(5), 1584-1602. https://doi.org/10.1093/advances/nmac016
Zamzani, I., & Triadisti, N. (2019). Antibacterial Activity of Extract and Fraction of Baccaurea macrocarpa Leaf on Escherichia coli and Bacillus cereus. Proceeding ISETH (International Summit on Science, Technology, and Humanity), 551-556. https://doi.org/10.23917/iseth.14
License
Copyright (c) 2025 Agnes Della Lumban Gaol, Sujarwati

This work is licensed under a Creative Commons Attribution 4.0 International License.
Jurnal Biologi Tropis is licensed under a Creative Commons Attribution 4.0 International License.
The copyright of the received article shall be assigned to the author as the owner of the paper. The intended copyright includes the right to publish the article in various forms (including reprints). The journal maintains the publishing rights to the published articles.
Authors are permitted to disseminate published articles by sharing the link/DOI of the article at the journal. Authors are allowed to use their articles for any legal purposes deemed necessary without written permission from the journal with an acknowledgment of initial publication to this journal.