Potential of Marine Algae as Peripheral Neuropathy Therapy: An Article Review
Authors
Najwa Widad , Lalu Dane Pemban Paerdoe , Ahmad Sa’bi Al Qindi , Arwinda Febri Yulianti , Ilsa HunaifiDOI:
10.29303/jbt.v25i3.9412Published:
2025-08-25Issue:
Vol. 25 No. 3 (2025): Juli-SeptemberKeywords:
Peripheral neuropathy therapy, Marine algae, Neuroinflammation, Neuropathic painArticles
Downloads
How to Cite
Downloads
Metrics
Abstract
Peripheral neuropathy is a peripheral nerve disorders involving sensory, motor, or mixed nerves. First-line therapies for peripheral neuropathy, such as analgesics and SSRIs, often yield suboptimal therapeutic responses, have side effects, and provide inadequate disease control. Therefore, there is a need for adjuvant therapy utilizing bioactive compounds from natural sources, one of which is marine algae. Marine algae contain various compounds that have the potential to serve as safe and effective alternative adjuvant therapies for peripheral neuropathy. The literature used was collected from the PubMed, ScienceDirect, and Google Scholar databases with restrictions: publication years from 2015 to 2025 and in either Indonesian or English. The review indicated that several compounds found in marine algae, such as florotanins, terpenoids, polysaccharides, peptide proteins, essential amino acids, and omega-3 fatty acids, exhibited biological activities such as antioxidant, anti-inflammatory, and neuroprotective effects. These compounds showed potential as alternative adjuvant therapies for peripheral neuropathy. In conclusion, the compounds in marine algae demonstrated various biological activities, suggesting their potential for development as alternative adjuvant therapies for peripheral neuropathy. Further research is needed to test their safety and effectiveness before being applied in clinical practice.
References
André-Lévigne, D., Pignel, R., Boet, S., Jaquet, V., Kalbermatten, D. F., & Madduri, S. (2024). Role of Oxygen and Its Radicals in Peripheral Nerve Regeneration: From Hypoxia to Physoxia to Hyperoxia. International Journal of Molecular Sciences, 25(4). https://doi.org/10.3390/ijms25042030
Azalia, D., Rachmawati, I., Zahira, S., Andriyani, F., Melia Sanini, T., & Rahmi Aulya. (2023). Uji Kualitatif Senyawa Aktif Flavonoid Dan Terpenoid Pada Beberapa Jenis Tumbuhan Fabaceae Dan Apocynaceae Di Kawasan Tngpp Bodogol. Bioma: Jurnal Biologi Makassar, 8(1), 32–43. https://journal.unhas.ac.id/index.php/bioma/article/view/23622
Barbalace, M. C., Malaguti, M., Giusti, L., Lucacchini, A., Hrelia, S., & Angeloni, C. (2019). Anti-inflammatory activities of marine algae in neurodegenerative diseases. International Journal of Molecular Sciences, 20(12). https://doi.org/10.3390/ijms20123061
Carpena, M., Pereira, C. S. G. P., Silva, A., Barciela, P., Jorge, A. O. S., Perez-Vazquez, A., Pereira, A. G., Barreira, J. C. M., Oliveira, M. B. P. P., & Prieto, M. A. (2024). Metabolite Profiling of Macroalgae: Biosynthesis and Beneficial Biological Properties of Active Compounds. Marine Drugs, 22(10). https://doi.org/10.3390/md22100478
Carrasco, C., Naziroglu, M., Rodríguez, A. B., & Pariente, J. A. (2018). Neuropathic pain: Delving into the oxidative origin and the possible implication of transient receptor potential channels. Frontiers in Physiology, 9(FEB), 1–15. https://doi.org/10.3389/fphys.2018.00095
Davari, M., Amani, B., Amani, B., Khanijahani, A., Akbarzadeh, A., & Shabestan, R. (2020). Pregabalin and gabapentin in neuropathic pain management after spinal cord injury: A systematic review and meta-analysis. Korean Journal of Pain, 33(1), 3–12. https://doi.org/10.3344/kjp.2020.33.1.3
De Jesus Raposo, M. F., De Morais, A. M. B., & De Morais, R. M. S. C. (2015). Marine polysaccharides from algae with potential biomedical applications. Marine Drugs, 13(5), 2967–3028. https://doi.org/10.3390/md13052967
Durán, A. M., Salto, L. M., Câmara, J., Basu, A., Paquien, I., Beeson, W. L., Firek, A., Cordero-Macintyre, Z., & De León, M. (2019). Effects of omega-3 polyunsaturated fatty-acid supplementation on neuropathic pain symptoms and sphingosine levels in Mexican-Americans with type 2 diabetes. Diabetes, Metabolic Syndrome and Obesity, 12, 109–120. https://doi.org/10.2147/DMSO.S187268
Echave, J., Otero, P., Garcia-Oliveira, P., Munekata, P. E. S., Pateiro, M., Lorenzo, J. M., Simal-Gandara, J., & Prieto, M. A. (2022). Seaweed-Derived Proteins and Peptides: Promising Marine Bioactives. Antioxidants, 11(1), 1–26. https://doi.org/10.3390/antiox11010176
Elbandy, M. (2023). Anti-Inflammatory Effects of Marine Bioactive Compounds and Their Potential as Functional Food Ingredients in the Prevention and Treatment of Neuroinflammatory Disorders. Molecules, 28(1). https://doi.org/10.3390/molecules28010002
Erniati, Syahrial, Erlangga, Imanullah, & Andika, Y. (2024). Total Phenolic Content and Antioxidant Activity of Seaweed Sargassum in Simeulue Water, Aceh. Jurnal Pengolahan Hasil Perikanan Indonesia, 27(3), 186–196. https://doi.org/10.17844/jphpi.v27i3.46981
Feldman, E. L., Callaghan, B. C., Pop-Busui, R., Zochodne, D. W., Wright, D. E., Bennett, D. L., Bril, V., Russel, J. W., & Viswanathan, V. (2019). Diabetic neuropathy. Nature Reviews Disease Primers, 41. https://doi.org/https://doi.org/10.1038/s41572-019-0092-1
Ferdous, U. T., & Yusof, Z. N. B. (2021). Medicinal Prospects of Antioxidants From Algal Sources in Cancer Therapy. Frontiers in Pharmacology, 12(March), 1–22. https://doi.org/10.3389/fphar.2021.593116
Gade, J. v, Gupta, N., Yadav, R. K., Rawat, R., & Jain, B. (2024). Terpenes from marine algae: isolation, identification, and applications. In P. O. Fuertes & D. K. Verma (Eds.), Marine Molecules from Algae and Cyanobacteria (1st ed.). Elsevier. https://doi.org/https://doi.org/10.1016/b978-0-443-21674-9.00010-6
Ghallab, D. S., Ibrahim, R. S., Mohyeldin, M. M., & Shawky, E. (2024). Marine algae: A treasure trove of bioactive anti-inflammatory compounds. Marine Pollution Bulletin, 199. https://doi.org/https://doi.org/10.1016/j.marpolbul.2023.116023
Gu, D., Xia, Y., Ding, Z., Qian, J., Gu, X., Bai, H., Jiang, M., & Yao, D. (2024). Inflammation in the Peripheral Nervous System after Injury. Biomedicines, 12(6), 1–15. https://doi.org/10.3390/biomedicines12061256
Hartati, I., Nurfaizin, S., Suwardiyono, & Kurniasari, L. (2016). Ekstraksi Gelombang Mikro Terpenoid Daun Surian (Toona sureni merr). Inovasi Teknik Kimia, 1(2), 98–103. https://publikasiilmiah.unwahas.ac.id/inteka/article/view/1656/1731
He, L., Huan, P., Xu, J., Chen, Y., Zhang, L., Wang, J., Wang, L., & Jin, Z. (2022). Hedysarum polysaccharide alleviates oxidative stress to protect against diabetic peripheral neuropathy via modulation of the keap1/Nrf2 signaling pathway. Journal of Chemical Neuroanatomy, 126. https://doi.org/https://doi.org/10.1016/j.jchemneu.2022.102182
Hu, D., Su, F., Yang, G., Wang, J., & Zhang, Y. (2021). Purification, structural characterization, and anti-inflammatory effects of a novel polysaccharide isolated from orostachys fimbriata. Molecules, 26(23). https://doi.org/10.3390/molecules26237116
Hussain, G., Wang, J., Rasul, A., Anwar, H., Qasim, M., Zafar, S., Aziz, N., Razzaq, A., Hussain, R., de Aguilar, J. L. G., & Sun, T. (2020). Current status of therapeutic approaches against peripheral nerve injuries: A detailed story from injury to recovery. International Journal of Biological Sciences, 16(1), 116–134. https://doi.org/10.7150/ijbs.35653
Hutapea, F. S., Kembuan, M. A. H. N., & P.S., J. M. (2016). Gambaran klinis neuropati pada pasien diabetes melitus di Poliklinik Neurologi RSUP Prof. Dr. R. D. Kandou periode Juli 2014 – Juni 2015. E-CliniC, 4(1). https://doi.org/10.35790/ecl.4.1.2016.12115
Kaku, M., & Simpson, D. M. (2018). Neuromuscular complications of HIV infection. In Handbook of Clinical Neurology (pp. 201–212). https://doi.org/https://doi.org/10.1016/B978-0-444-63849-6.00016-5
Kim, T., Song, B., Cho, K. S., & Lee, I. S. (2020). Therapeutic potential of volatile terpenes and terpenoids from forests for inflammatory diseases. International Journal of Molecular Sciences, 21(6). https://doi.org/10.3390/ijms21062187
Kwon, Y. J., Kwon, O. I., Hwang, H. J., Shin, H. C., & Yang, S. (2023). Therapeutic effects of phlorotannins in the treatment of neurodegenerative disorders. Frontiers in Molecular Neuroscience, 16(May), 1–16. https://doi.org/10.3389/fnmol.2023.1193590
Liu, H., Zhang, L., Yu, J., & Shao, S. (2024). Advances in the application and mechanism of bioactive peptides in the treatment of inflammation. Frontiers in Immunology, 15(August), 1413179. https://doi.org/10.3389/fimmu.2024.1413179
Liu, T., Zhang, L., Joo, D., & Sun, S. C. (2017). NF-κB signaling in inflammation. Signal Transduction and Targeted Therapy, 2(March). https://doi.org/10.1038/sigtrans.2017.23
Martins, B., Vieira, M., Delerue-matos, C., Grosso, C., & Soares, C. (2022). and Bioavailability of Algae-Derived Compounds with Neuroprotective Activity : A Comprehensive Review. Marine Drugs, 20(362), 1–55. https://doi.org/https://doi.org/10.3390/md20060362
Meshalkina, D., Tsvetkova, E., Orlova, A., Islamova, R., Grashina, M., Gorbach, D., Babakov, V., Francioso, A., Birkemeyer, C., Mosca, L., Tarakhovskaya, E., & Frolov, A. (2023). First Insight into the Neuroprotective and Antibacterial Effects of Phlorotannins Isolated from the Cell Walls of Brown Algae Fucus vesiculosus and Pelvetia canaliculata. Antioxidants, 12(3). https://doi.org/10.3390/antiox12030696
Pangestuti, R., & Kim, S. (2015). Seaweed proteins, peptides, and amino acids. In Seaweed Sustainability (pp. 125–140). https://doi.org/http://dx.doi.org/10.1016/B978-0-12-418697-2.00006-4
Perdana, B. A., Chaidir, Z., Kusnanda, A. J., Dharma, A., Zakaria, I. J., Syafrizayanti, Bayu, A., & Putra, M. Y. (2021). Omega-3 fatty acids of microalgae as a food supplement: A review of exogenous factors for production enhancement. Algal Research, 60. https://doi.org/https://doi.org/10.1016/j.algal.2021.102542
Pereira, L., & Valado, A. (2023). Algae-Derived Natural Products in Diabetes and Its Complications—Current Advances and Future Prospects. Life, 13(9), 1–33. https://doi.org/10.3390/life13091831
Priyadarsini, M., Nivetha, X. R., Mathimani, T., Anto, S., Krishnan, H. H., Glivin, G., Premalatha, M., Mariappan, V., & Sekhar, J. (2022). Omega-3-fatty acids from algae for health benefits. Materials Today: Proceedings, 66(3), 1514–1518. https://doi.org/http://dx.doi.org/10.1016/j.matpr.2022.07.177
Putra, I., Anwar, Y., & Surbakti, K. P. (2018). Perbedaan Efek Analgesik Amitriptilin, Gabapentin, Dan Pregabalin Pada Neuropati Diabetik Dan Neuralgia Trigeminal. Majalah Kedokteran Neurosains Perhimpunan Dokter Spesialis Saraf Indonesia, 35(2), 109–115. https://doi.org/10.52386/neurona.v35i2.19
Putri, A. M., Hasneli, Y., & Safri. (2020). Faktor-Faktor Yang Mempengaruhi Derajat Keparahan Neuropati Perifer Pada Pasien Diabetes Melitus : Literature Review. Jurnal Ilmu Keperawatan, 8(1), 38–53. https://doi.org/https://doi.org/10.52199/jik.v8i1.17892
Rizkaprilisa, W., Griselda, A., Hapsari, M. W., & Paramastuti, R. (2023). PEMANFAATAN RUMPUT LAUT SEBAGAI PANGAN FUNGSIONAL: SYSTEMATIC REVIEW Info Artikel. Science, Technology and Management Journal, 3(182), 28–33. https://doi.org/http://dx.doi.org/10.26623/jtphp.v13i1.1845.kodeartikel
Robinson, L. R. (2018). Predicting Recovery from Peripheral Nerve Trauma. Physical Medicine and Rehamilitation Clinics of North America, 29(4), 721–733. https://doi.org/https://doi.org/10.1016/j.pmr.2018.06.007
Rostami, Z., Ghasemi, S., Farzadmanesh, H., Safari, M., & Ghanbari, A. (2020). Sex Difference in Trigeminal Neuropathic Pain Response to Exercise: Role of Oxidative Stress. Pain Research and Management, 2020. https://doi.org/10.1155/2020/3939757
Septiady, D., Hendrawan, I. G., & Putra, I. N. G. (2023). Keanekaragaman Jenis Makroalga di Perairan Teluk Gilimanuk Bali. Jurnal Ilmiah Multidisiplin, 2(10), 4831–4843. https://doi.org/https://doi.org/10.56799/jim.v2i10.2253
Shim, H. S., Bae, C., Wang, J., Lee, K. H., Hankerd, K. M., Kim, H. K., Chung, J. M., & La, J. H. (2019). Peripheral and central oxidative stress in chemotherapy-induced neuropathic pain. Molecular Pain, 15. https://doi.org/10.1177/1744806919840098
Sim, A. S., Wijaya, D. A., Nathaniel, F., Yogie, G. S., Firmansyah, Y., Sugiarto, H., Amadea, S., & Santoso, A. H. (2023). Profil Neuropati Perifer Dan Korelasinya Dengan Kadar Gula Darah Sewaktu di Panti Lansia Santa Anna. Malahayati Nursing Journal, 5(9), 3240–3250. https://doi.org/https://doi.org/10.33024/mnj.v5i9.11121
Solomevich, S. O., Oranges, C. M., Kalbermatten, D. F., Schwendeman, A., & Madduri, S. (2023). Natural polysaccharides and their derivatives as potential medical materials and drug delivery systems for the treatment of peripheral nerve injuries. Carbohydrate Polymers, 315. https://doi.org/https://doi.org/10.1016/j.carbpol.2023.120934
Wang, X., Sun, X., Niu, M., Zhang, X., Wang, J., Zhou, C., & Xie, A. (2020). RAGE Silencing Ameliorates Neuroinflammation by Inhibition of p38-NF-κB Signaling Pathway in Mouse Model of Parkinson’s Disease. Frontiers in Neuroscience, 14(April), 1–10. https://doi.org/10.3389/fnins.2020.00353
Wei, C., Guo, Y., Ci, Z., Li, M., Zhang, Y., & Zhou, Y. (2024). Advances of Schwann cells in peripheral nerve regeneration: From mechanism to cell therapy. Biomedicine & Pharmacotherapy, 175. https://doi.org/https://doi.org/10.1016/j.biopha.2024.116645
Wijaya, L. (2021). Tatalaksana Nyeri Neuropatik Perifer dengan Sediaan Patch. Cermin Dunia Kedokteran, 48(9), 318. https://doi.org/10.55175/cdk.v48i9.1484
Wu, L., He, J., Shen, N., & Chen, S. (2025). Molecular and cellular mechanism underlying peripheral nerve injury-induced cellular ecological shifts: Implications for neuroregeneration. IBRO Neuroscience Reports, 18, 120–129. https://doi.org/https://doi.org/10.1016/j.ibneur.2024.12.013
Xie, A. X., Taves, S., & McCarthy, K. (2022). Nuclear Factor κB-COX2 Pathway Activation in Non-myelinating Schwann Cells Is Necessary for the Maintenance of Neuropathic Pain in vivo. Frontiers in Cellular Neuroscience, 15(January). https://doi.org/10.3389/fncel.2021.782275
Xie, H., Chen, Y., Wu, W., Feng, X., & Du, K. (2021). Gastrodia elata Blume Polysaccharides Attenuate Vincristine-Evoked Neuropathic Pain through the Inhibition of Neuroinflammation. Mediators of Inflammation, 2021. https://doi.org/10.1155/2021/9965081
Xu, S. Y., Huang, X., & Cheong, K. L. (2017). Recent advances in marine algae polysaccharides: Isolation, structure, and activities. Marine Drugs, 15(12), 1–16. https://doi.org/10.3390/md15120388
Zhang, A. C., De Silva, M. E., MacIsaac, R. J., Roberts, L., Kamel, J., Craig, J. P., Busija, L., & Downie, L. E. (2019). Omega-3 polyunsaturated fatty acid oral supplements for improving peripheral nerve health: a systematic review and meta-analysis. Nutrition Reviews, 78(4), 323–341. https://doi.org/https://doi.org/10.1093/nutrit/nuz054
License
Copyright (c) 2025 Najwa Widad, Lalu Dane Pemban Paerdoe, Ahmad Sa’bi Al Qindi, Arwinda Febri Yulianti, Ilsa Hunaifi

This work is licensed under a Creative Commons Attribution 4.0 International License.
Jurnal Biologi Tropis is licensed under a Creative Commons Attribution 4.0 International License.
The copyright of the received article shall be assigned to the author as the owner of the paper. The intended copyright includes the right to publish the article in various forms (including reprints). The journal maintains the publishing rights to the published articles.
Authors are permitted to disseminate published articles by sharing the link/DOI of the article at the journal. Authors are allowed to use their articles for any legal purposes deemed necessary without written permission from the journal with an acknowledgment of initial publication to this journal.