Stability Analysis of Nonlinear Dynamic Systems Using the Lyapunov Method Approach
Authors
Andreas Perdamenta PeranginanginDOI:
10.29303/jm.v5i2.6383Published:
2023-12-30Issue:
Vol. 5 No. 2 (2023): Edisi DesemberKeywords:
Analysis, Lyapunov, NonlinearArticles
Downloads
How to Cite
Downloads
Metrics
Abstract
A new approach to the stability analysis of homogeneous nonlinear systems is proposed, based on the concept of candidate Lyapunovfunctions, where the focus is not on the positive definiteness of the candidate Lyapunovfunctions, but on the negative definiteness of their derivatives. After having ensured the negative definiteness of the derivative function, on the basis of the sign assignment of the primitive function, the stability of the equilibrium is analyzed, where the necessary and sufficient conditions are declared at the same time. The selection of the tendency of the Lyapunov candidate function is primarily performed in the form of a linear combination of some simple functions. The unknown coefficients in the structure of the candidate function are computed based on the negative definiteness of the derivative function. Then, using these coefficients in Lyapunov function, sign of primitive function in state space is argued. Thus, the stability/instability of the equilibrium point can be deduced from the triple sign settings of the candidate function. Furthermore, in the process of negative definiteness of the derivative function, the coefficients are obtained using two independent methods. The proposed theoretical results are supported and their effectiveness is demonstrated by numerical simulations.
References
Anghel, M., Milano, F., & Papachristodoulou, A. (2013). Algorithmic construction of Lyapunov functions for power system stability analysis. IEEE Trans Circuits Syst I Regul Pap, 60(9):2533–2546. http://dx.doi.org/10.1109/TCSI.2013.2246233
Baillieul, J. (1980). The geometry of homogeneous-polynomial dynamical systems. Nonlinear Anal Theor Merhods Appl, 4(5):879–900. https://doi.org/10.1016/0362-546X(80)90002-4
Bouzaouache, H. & Braiek, N.B. (2008). On the stability analysis of nonlinear systems using polynomial Lyapunov functions. Math Comput Simul, 76(5–6):316–329. DOI: 10.1016/j.matcom.2007.04.001
Chen, G. & Guo, Z. (2019). Observer-based distributed control and synchronization analysis of inverter-based nonlinear power sys- tems. Nonlinear Dyn, 1–23. DOI:10.1007/s11071-019-05393-9
Fawzi, H., Tabuada, P., & Diggavi, S. (2014). Secure estimation and con- trol for cyber-physical systems under adversarial attacks. IEEE Trans Autom Control, 59(6):1454–1467. https://doi.org/10.48550/arXiv.1205.5073
Fisher, J. & Bhattacharya, R. (2009). Analysis of partial stabil- ity problems using sum of squares techniques. Automatica, 45(3):724–730
Hafstein, S., Kellett, C.M., & Li, H. (2014). Continuous and piecewise affine Lyapunov functions using the Yoshizawa construction. In: American control conference (ACC). DOI:10.1109/ACC.2014.6858660
Hafstein, S.F. (2007). An algorithm for constructing Lyapunov func- tions. Electron J Differ Equ Monograph 08. DOI:10.58997/ejde.mon.08
Haimo, V.T. (1986). An algebraic approach to nonlinear stability. Nonlinear Anal. Theory Methods Appl., 10(7):683–692. https://doi.org/10.1016/0362-546X(86)90128-8
Hancock, E.J. & Papachristodoulou, A. (2013). Generalised absolute stability and sum of squares. Automatica, 49(4):960–967. https://doi.org/10.1016/j.automatica.2013.01.006
Ji, Z., Wu, W., Feng, Y., & Zhang, G. (2013). Constructing the Lyapunov function through solving positive dimensional polynomial sys- tem. J Appl Math 13, 859578. DOI:10.1155/2013/859578
Kawski, M. (1990). Homogeneous feedback stabilization. In: Conte G, Perdon AM, Wyman B (eds) New Trends in Systems Theory. Birkhauser, Boston, pp 464–471
Behrooz, K. (2016). Chaotic conjugate stability transfor- mation method for structural reliability analysis. Comput Meth- ods Appl Mech Eng, 310:866–885. https://doi.org/10.1016/j.cma.2016.07.046
Kim, H., Guo, P., Zhu, M., & Liu, P. (2016). Attack-resilient estimation of switched nonlinear cyber-physical systems. arXiv preprint http://arxiv.org/abs/1609.03600
Kim, H., Guo, P., Zhu, M., & Liu, P. (2017). Attack-resilient estimation of switched nonlinear cyber-physical systems. In: 2017 American control conference (ACC), Seattle, pp 4328–4333. DOI:10.23919/ACC.2017.7963621
Ling, Q., Jin, X.L., Wang, Y., Li, H.F., & Huang, Z.L. (2013). Lyapunov func- tion construction for nonlinear stochastic dynamical systems. Nonlinear Dyn, 72(4):853–864. DOI:10.1007/s11071-013-0757-3
Matsue, K., Hiwaki, T., & Yamamoto, N. (2017) “On the construction of Lyapunov functions with computer assistance. J Comput Appl Math, 319:385–412. https://doi.org/10.1016/j.cam.2017.01.002
Mayer, C. (2000). Matrix analysis and applied linear algebra. SIAM, New Delhi https://doi.org/10.1137/1.9780898719512
Meigoli, V., Ansari, M., & Barhaghtalab, M.H. (2017). Stability analysis of non-linear dynamical homogeneous systems based on Lyapu- nov function constructed of linear combination of basic func- tions, Sindhological Studies, vol 2017, no 1
Saleh, M. & Dumitru, B. (2016). Stability analysis and controller design for the performance improvement of dis- turbed nonlinear systems using adaptive global sliding mode control approach. Nonlinear Dyn, 83(3):1557–1565 DOI:10.1007/s11071-015-2430-5
Papachristodoulou, A., Prajna, S. (2002). On the construction of Lyapunov functions using the sum of squares decomposition. In: Proceedings of IEEE CDC DOI:10.1109/CDC.2002.1184414
Pasqualetti, F., Dörfler, F., & Bullo, F. (2013). Attack detection and iden- tification in cyber-physical systems. IEEE Trans Autom Control, 58(11):2715–2729 DOI: 10.1109/TAC.2013.2266831
Rosier, L. (1992). Homogeneous Lyapunov function for homoge- neous continuous vector field. Syst Control Lett, 19:467–473
José, S., Enrique, P., & Enrique, M. (2018). Stability of breakwater roundhead protected with a Cubipod single-layer armor. Appl Ocean Res, 79:36–48 https://doi.org/10.1016/j.apor.2018.07.006
Schwartz, C.A. & Yan, A. (1997). Construction of Lyapunov functions for nonlinear systems using normal forms. J Math Anal Appl, 216(2):521–535 https://doi.org/10.1006/jmaa.1997.5679
Shen, Y. & Xia, X. (2011). Global asymptotical stability and global finite-time stability for nonlinear homogeneous systems. IFAC Proc, 44(1):4644–4647 https://doi.org/10.3182/20110828-6-IT-1002.00798
Slotine, J.J. & Li, W. (1991) Applied nonlinear control. Pearson, London.
Wang, Z., Liu, X., Liu, K., Li, S., & Wang, H. (2017) Backstepping-based Lyapunov function construction using approximate dynamic programming and sum of square techniques. IEEE Trans Cybern, 47(10):3393–3403. DOI:10.1109/TCYB.2016.2574747
License
Copyright (c) 2023 Andreas Perdamenta Peranginangin
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.