A Simple and Sensitive Optode Sensor Glucose Based on Immobilization Benedict Into Nata Cellulose Membranes

Dhony Hermanto, Rochmad Kris Sanjaya, Nurul Ismillayli

Abstract

Determination of glucose concentration in urine and blood that anyone can use at any time is Benedict reagent based chemical sensor. This optical sensor was developed by immobilizing Benedict reagent into nata cellulose as supporting material via entrapment. The nata cellulose/Benedict membrane for glucose determination has optimum condition at maximum wavelenght   of 541.57 nm, Benedict concentration of 0.4470 M, and ratio of nata cellulse mass to Benedict volume was 1:3. Characterization of optical sensor for glucose was in working range of 0-5000 ppm, limit of detection was 911,11 ppm, sensitivity was 0.0009 and reproducibility was 0.2295%.

Keywords

Optical Chemical Sensor, Benedict Reagent, Nata Cellulose, Entrapment, Glucose

Full Text:

PDF

References

Garris, D. R. & Garris, B. L. (2003). Diabetes-Induced Progressive Endometerial Involution Characterization of Periluminal Epithelial Lipoanathrophy, Experimantal Biology and Medicine, 52(1). 51-58.

Chang, A. S., Dale, A. N. & Moley, K. H. (2005). Maternal Diabetes Adversely Afects Preovulatory Oocyte Maturation, Development and Granulosa Cell Apoptosis, Endocrinology, 146(5). 2445-2453.

Koolman, J. & Rohm, K. H. (2001). Atlas Berwarna dan Teks Biokimia. Terjemahan Dr. Rer. physol dan dr. Septelia Inawati Wanandi. Jakarta: Penerbit Hipokrates.

Koch, Bernd. (2004). The Role of Urine Glucose Testing in the Management of Diabetes Mellitus. Canadian Journal of Diabetes. 28 (1). 238-245

Kuswandi, B., Andreas, R. & Ramaier, N. (2001). Optical Fibre Biosensor Based on Immobilized Enzyme. The Analyst, 126.1469-1491.

Jandura, P., Rield, B. & Kokta, B. V. (2000). Thermal Degraation Behavior of Cellulose Fibers Partially Esterified with Some Long Chain Organic Acids, Polymer Degraation and Stability, 70. 387-394.

Valente, A. J. M., Burrows, H. D., Polishchuk, A. Y., Dominingues, C. P., Borges, O. M. F., Eusebio, M. E. S., Maria, T. M. R., Lobo, V. M. M. & Monkman, A. P. (2005). Permeation of Sodium Dodecyl Sulfate throught Polyaniline modified Cellulose Acetate Membranes, Polymer, 46. 5918-5928.

Tanabe T., Tauma, K., Hamasaki, K. & Ueno, A. (2001). Immobilized fluorescent Cyclodextrin on a Cellulose Membrane as a Chemosensor for Molecule Detection. Journal of Analytical Chemistry, 73. 3126-3130.

Kristinowicz (2005). Molecular Basis of Cellulose Biosynthesis Disappearance in Submerged Culture of Acetobacter xylinum. Jurnal Acta Biochimica Polonica, 52(3). 691-698.

Piluharto, B. 2003. Kajian Sifat Fisik Film Tipis Nata de Coco Sebagai Membran Ultrafiltrasi. Jurnal Ilmu Dasar, 4(1). 52-57.

Rezaee (2005). Role Plasmid in Production of Acetobacter xylinum Biofilms. American Journal of Biochemistry and Biotechnology, 3. 121-125.

Wulandari, R., Hamdiani, S., & Ismillayli, N. (2019). Synthesis Of Mesoporiic Silica From Rice Husk Ash For Pinostrobin Based Drug Delivery. Acta Chimica Asiana, 2(1), 75-82.

Ismillayli, N., Kamali, S. R., Hadi, S., & Hermanto, D. (2019). Synthesis of Biodegradable Superabsorbent Polymers from Carboxymethyl Cellulose/Humic Acid. Acta Chimica Asiana, 2(2), 95-98.

Refbacks

  • There are currently no refbacks.